The increase in resistant bacterial strains necessitates the identification of new antimicrobial molecules. Antimicrobial peptides (AMPs) are an attractive option because of evidence that bacteria cannot easily develop resistance to AMPs. The peptaibols, a class of naturally occurring AMPs, have shown particular promise as antimicrobial drugs, but their development has been hindered by their mechanism of action not being clearly understood. To explore how peptaibols might interact with membranes, circular dichroism, vibrational circular dichroism, linear dichroism, Raman spectroscopy, Raman optical activity, neutron reflectivity and molecular dynamics simulations have been used to study a small library of peptaibol mimics, the Aib-rich peptides. All the peptides studied quickly partitioned and oriented in membranes, and we found evidence of chiral interactions between the phospholipids and membrane-embedded peptides. The protocols presented in this paper open new ground by showing how chiro-optical spectroscopies can throw light on the mechanism of action of AMPs.
- MeSH
- cirkulární dichroismus MeSH
- fosfatidylcholiny chemie MeSH
- kationické antimikrobiální peptidy chemie metabolismus MeSH
- lipidové dvojvrstvy chemie metabolismus MeSH
- peptaiboly chemie metabolismus MeSH
- simulace molekulární dynamiky * MeSH
- stereoizomerie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Chemical analyses of Fusarium avenaceum grown on banana medium resulted in eight novel spiroleptosphols, T1, T2 and U-Z (1-8). The structures were elucidated by a combination of high-resolution mass spectrometric data and 1- and 2-D NMR experiments. The relative stereochemistry was assigned by 1H coupling and NOESY/ROESY experiments. Absolute stereochemistry established for 7 by vibrational circular dichroism was found analogous to that of the putative polyketide spiroleptosphol from Leptosphaeria doliolum.
We report as a proof-of-concept the first application of circularly polarized luminescence (CPL) measured with a Raman optical activity (ROA) spectrometer to differentiate several DNA structures without need of sensitizing complexes. The ROA/CPL approach provides sufficiently high CPL intensity to use hydrated Eu3+ ions, thus avoiding DNA structural changes associated with binding of sensitizers and overcoming the sensitizer quenching issue. We showed that deoxyguanosine monophosphate (dGMP), single- and double-stranded DNA provide different CPL spectra, which could be used for their discrimination. Our results demonstrate that ROA/CPL method is a promising approach to measure CPL spectra of complex biomolecules when the use of sensitizers is not possible. The method can be extended to other biomolecules, such as proteins, lipids, sugars, etc.
An increased circular dichroism (CD) signal of large molecular aggregates formed upon DNA condensation was observed a long time ago, and is often referred to as psi-CD. The effort to understand this phenomenon is further motivated by the latest DNA packing studies and advances in macromolecular chemistry. In the present work, the transition dipole coupling model describing interactions of molecules with light has been extended to handle systems of arbitrary size. The analytical formulae obtained retain the simplicity and computational speed of the standard approach. The origin of the psi-effect was investigated on several model systems. The results suggest that the CD enhancement is primarily caused by delocalized phonon-like excitations in nucleic acid strands. The size of the system exhibiting the effect thus does not need to be comparable with or greater than the wavelength of the absorbed light. Small structural irregularities still allow for the enhancement while a larger disorder breaks it. The modeling is consistent with previous experimental electronic and vibrational CD studies, and makes it possible to correlate the enhancement with the geometry of the nucleic acid systems. 2008 Wiley Periodicals, Inc.
The cis-platin binding to the d(CCTGGTCC)*d(GGACCAGG) model DNA octamer was monitored with infrared absorption (IR) and vibrational circular dichroism (VCD) spectroscopies. The spectra were modeled with the aid of density functional computations and a Cartesian coordinate-based transfer of molecular property tensors from smaller DNA fragments. Because of the fragmentation, the tensors could be calculated with a higher precision. Environmental effects, such as the presence of the solvent or the cis-platin ligand, could be included in the modeling. The solvent was modeled by an explicit inclusion of hydrogen-bound water molecules, positions of which were estimated from a molecular dynamics simulation, or by the polarized continuum COSMO model. The B3LYP and BPW91 functionals used for the calculations of the spectral parameters were combined with the relativistic LANL2DZ platinum pseudo-potentials. The simulations reproduced the main IR and VCD DNA spectral features and explained most of the changes observed experimentally upon metal binding. The results confirmed that the influence of the ligand on DNA vibrational properties is quite complex; it originates in the geometry deformation and normal mode coupling pattern changes of the platinated octamer, as well as in local perturbations of the electronic structure and force field of the GC base pairs to which the platinum is bound. Many of the local effects could be accounted for by a point charge used in place of the metal in the GC complex.
- MeSH
- chemické modely MeSH
- cisplatina chemie MeSH
- DNA chemie MeSH
- farmaceutická chemie metody MeSH
- financování organizované MeSH
- fyzikální chemie metody MeSH
- guanidin chemie MeSH
- ionty MeSH
- ligandy MeSH
- magnetická rezonanční spektroskopie MeSH
- molekulární konformace MeSH
- molekulární struktura MeSH
- oligonukleotidy chemie MeSH
- protinádorové látky chemie MeSH
- spektrofotometrie infračervená metody MeSH
- spektrofotometrie metody MeSH