Microscopic examination plays a significant role in the initial screening for a variety of hematological, as well as non-hematological, diagnoses. Microscopic blood smear examination that is considered a key diagnostic technique, is in recent clinical practice still performed manually, which is not only time consuming, but can lead to human errors. Although automated and semi-automated systems have been developed in recent years, their high purchasing and maintenance costs make them unaffordable for many medical institutions. Even though much research has been conducted lately to explore more accurate and feasible solutions, most researchers had to deal with a lack of medical data. To address the lack of large-scale databases in this field, we created a high-resolution dataset containing a total of 16027 annotated white blood cells. Moreover, the dataset covers overall 9 types of white blood cells, including clinically significant pathological findings. Since we used high-quality acquisition equipment, the dataset provides one of the highest quality images of blood cells, achieving an approximate resolution of 42 pixels per 1 μm.
- MeSH
- leukocyty * cytologie patologie MeSH
- lidé MeSH
- mikroskopie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- dataset MeSH
- práce podpořená grantem MeSH
Microscopic image analysis plays a significant role in initial leukemia screening and its efficient diagnostics. Since the present conventional methodologies partly rely on manual examination, which is time consuming and depends greatly on the experience of domain experts, automated leukemia detection opens up new possibilities to minimize human intervention and provide more accurate clinical information. This paper proposes a novel approach based on conventional digital image processing techniques and machine learning algorithms to automatically identify acute lymphoblastic leukemia from peripheral blood smear images. To overcome the greatest challenges in the segmentation phase, we implemented extensive pre-processing and introduced a three-phase filtration algorithm to achieve the best segmentation results. Moreover, sixteen robust features were extracted from the images in the way that hematological experts do, which significantly increased the capability of the classifiers to recognize leukemic cells in microscopic images. To perform the classification, we applied two traditional machine learning classifiers, the artificial neural network and the support vector machine. Both methods reached a specificity of 95.31%, and the sensitivity of the support vector machine and artificial neural network reached 98.25 and 100%, respectively.
- Publikační typ
- časopisecké články MeSH