Heart failure (HF) is an end-stage of many cardiac diseases and one of the main causes of death worldwide. The current management of this disease remains suboptimal. The adult mammalian heart was considered a post-mitotic organ. However, several reports suggest that it may possess modest regenerative potential. Adult cardiac progenitor cells (CPCs), the main players in the cardiac regeneration, constitute, as it may seem, a heterogenous group of cells, which remain quiescent in physiological conditions and become activated after an injury, contributing to cardiomyocytes renewal. They can mediate their beneficial effects through direct differentiation into cardiac cells and activation of resident stem cells but majorly do so through paracrine release of factors. CPCs can secrete cytokines, chemokines, and growth factors as well as exosomes, rich in proteins, lipids and non-coding RNAs, such as miRNAs and YRNAs, which contribute to reparation of myocardium by promoting angiogenesis, cardioprotection, cardiomyogenesis, anti-fibrotic activity, and by immune modulation. Preclinical studies assessing cardiac progenitor cells and cardiac progenitor cells-derived exosomes on damaged myocardium show that administration of cardiac progenitor cells-derived exosomes can mimic effects of cell transplantation. Exosomes may become new promising therapeutic strategy for heart regeneration nevertheless there are still several limitations as to their use in the clinic. Key questions regarding their dosage, safety, specificity, pharmacokinetics, pharmacodynamics and route of administration remain outstanding. There are still gaps in the knowledge on basic biology of exosomes and filling them will bring as closer to translation into clinic.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Heart failure remains a major cause of death worldwide. There is a need to establish new management options as current treatment is frequently suboptimal. Clinical approaches based on autologous stem cell transplant is potentially a good alternative. The heart was long considered an organ unable to regenerate and renew. However, several reports imply that it may possess modest intrinsic regenerative potential. To allow for detailed characterization of cell cultures, whole transcriptome profiling was performed after 0, 7, 15, and 30 days of in vitro cell cultures (IVC) from the right atrial appendage and right atrial wall utilizing microarray technology. In total, 4239 differentially expressed genes (DEGs) with ratio > abs |2| and adjusted p-value ≤ 0.05 for the right atrial wall and 4662 DEGs for the right atrial appendage were identified. It was shown that a subset of DEGs, which have demonstrated some regulation of expression levels with the duration of the cell culture, were enriched in the following GO BP (Gene Ontology Biological Process) terms: "stem cell population maintenance" and "stem cell proliferation". The results were validated by RT-qPCR. The establishment and detailed characterization of in vitro culture of myocardial cells may be important for future applications of these cells in heart regeneration processes.
The ovarian follicle is the basic functional unit of the ovary, comprising theca cells and granulosa cells (GCs). Two different types of GCs, mural GCs and cumulus cells (CCs), serve different functions during folliculogenesis. Mural GCs produce oestrogen during the follicular phase and progesterone after ovulation, while CCs surround the oocyte tightly and form the cumulus oophurus and corona radiata inner cell layer. CCs are also engaged in bi-directional metabolite exchange with the oocyte, as they form gap-junctions, which are crucial for both the oocyte's proper maturation and GC proliferation. However, the function of both GCs and CCs is dependent on proper follicular angiogenesis. Aside from participating in complex molecular interplay with the oocyte, the ovarian follicular cells exhibit stem-like properties, characteristic of mesenchymal stem cells (MSCs). Both GCs and CCs remain under the influence of various miRNAs, and some of them may contribute to polycystic ovary syndrome (PCOS) or premature ovarian insufficiency (POI) occurrence. Considering increasing female fertility problems worldwide, it is of interest to develop new strategies enhancing assisted reproductive techniques. Therefore, it is important to carefully consider GCs as ovarian stem cells in terms of the cellular features and molecular pathways involved in their development and interactions as well as outline their possible application in translational medicine.
- MeSH
- fyziologická neovaskularizace * MeSH
- kmenové buňky metabolismus MeSH
- kumulární buňky metabolismus MeSH
- lidé MeSH
- primární ovariální insuficience metabolismus MeSH
- syndrom polycystických ovarií metabolismus MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Adipocytokines are hormonally active molecules that are believed to play a key role in the regulation of crucial biological processes in the human body. Numerous experimental studies established significant alterations in the adipokine secretion patterns throughout pregnancy. The exact etiology of various gestational complications, such as gestational diabetes, preeclampsia, and fetal growth abnormalities, needs to be fully elucidated. The discovery of adipokines raised questions about their potential contribution to the molecular pathophysiology of those diseases. Multiple studies analyzed their local mRNA expression and circulating protein levels. However, most studies report conflicting results. Several adipokines such as leptin, resistin, irisin, apelin, chemerin, and omentin were proposed as potential novel early markers of heterogeneous gestational complications. The inclusion of the adipokines in the standard predictive multifactorial models could improve their prognostic values. Nonetheless, their independent diagnostic value is mostly insufficient to be implemented into standard clinical practice. Routine assessments of adipokine levels during pregnancy are not recommended in the management of both normal and complicated pregnancies. Based on the animal models (e.g., apelin and its receptors in the rodent preeclampsia models), future implementation of adipokines and their receptors as new therapeutic targets appears promising but requires further validation in humans.
- MeSH
- adipokiny metabolismus MeSH
- biologické markery metabolismus MeSH
- gestační diabetes metabolismus patologie MeSH
- lidé MeSH
- preeklampsie metabolismus patologie MeSH
- těhotenství MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH