Endometrial biopsies are important in the diagnostic workup of women who present with abnormal uterine bleeding or hereditary risk of endometrial cancer. In general, approximately 10% of all endometrial biopsies demonstrate endometrial (pre)malignancy that requires specific treatment. As the diagnostic evaluation of mostly benign cases results in a substantial workload for pathologists, artificial intelligence (AI)-assisted preselection of biopsies could optimize the workflow. This study aimed to assess the feasibility of AI-assisted diagnosis for endometrial biopsies (endometrial Pipelle biopsy computer-aided diagnosis), trained on daily-practice whole-slide images instead of highly selected images. Endometrial biopsies were classified into 6 clinically relevant categories defined as follows: nonrepresentative, normal, nonneoplastic, hyperplasia without atypia, hyperplasia with atypia, and malignant. The agreement among 15 pathologists, within these classifications, was evaluated in 91 endometrial biopsies. Next, an algorithm (trained on a total of 2819 endometrial biopsies) rated the same 91 cases, and we compared its performance using the pathologist's classification as the reference standard. The interrater reliability among pathologists was moderate with a mean Cohen's kappa of 0.51, whereas for a binary classification into benign vs (pre)malignant, the agreement was substantial with a mean Cohen's kappa of 0.66. The AI algorithm performed slightly worse for the 6 categories with a moderate Cohen's kappa of 0.43 but was comparable for the binary classification with a substantial Cohen's kappa of 0.65. AI-assisted diagnosis of endometrial biopsies was demonstrated to be feasible in discriminating between benign and (pre)malignant endometrial tissues, even when trained on unselected cases. Endometrial premalignancies remain challenging for both pathologists and AI algorithms. Future steps to improve reliability of the diagnosis are needed to achieve a more refined AI-assisted diagnostic solution for endometrial biopsies that covers both premalignant and malignant diagnoses.
- MeSH
- biopsie MeSH
- hyperplazie MeSH
- lidé MeSH
- počítače * MeSH
- reprodukovatelnost výsledků MeSH
- studie proveditelnosti MeSH
- umělá inteligence * MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
This paper describes an evaluation framework that allows a standardized and quantitative comparison of IVUS lumen and media segmentation algorithms. This framework has been introduced at the MICCAI 2011 Computing and Visualization for (Intra)Vascular Imaging (CVII) workshop, comparing the results of eight teams that participated. We describe the available data-base comprising of multi-center, multi-vendor and multi-frequency IVUS datasets, their acquisition, the creation of the reference standard and the evaluation measures. The approaches address segmentation of the lumen, the media, or both borders; semi- or fully-automatic operation; and 2-D vs. 3-D methodology. Three performance measures for quantitative analysis have been proposed. The results of the evaluation indicate that segmentation of the vessel lumen and media is possible with an accuracy that is comparable to manual annotation when semi-automatic methods are used, as well as encouraging results can be obtained also in case of fully-automatic segmentation. The analysis performed in this paper also highlights the challenges in IVUS segmentation that remains to be solved.
- MeSH
- databáze faktografické normy MeSH
- internacionalita MeSH
- interpretace obrazu počítačem metody normy MeSH
- intervenční ultrasonografie metody normy MeSH
- lidé MeSH
- nemoci koronárních tepen ultrasonografie MeSH
- referenční hodnoty MeSH
- reprodukovatelnost výsledků MeSH
- senzitivita a specificita MeSH
- směrnice pro lékařskou praxi jako téma * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH