Lipid nanoparticle (LNP)-mRNA complexes are transforming medicine. However, the medical applications of LNPs are limited by their low endosomal disruption rates, high toxicity and long tissue persistence times. LNPs that rapidly hydrolyse in endosomes (RD-LNPs) could solve the problems limiting LNP-based therapeutics and dramatically expand their applications but have been challenging to synthesize. Here we present an acid-degradable linker termed 'azido-acetal' that hydrolyses in endosomes within minutes and enables the production of RD-LNPs. Acid-degradable lipids composed of polyethylene glycol lipids, anionic lipids and cationic lipids were synthesized with the azido-acetal linker and used to generate RD-LNPs, which significantly improved the performance of LNP-mRNA complexes in vitro and in vivo. Collectively, RD-LNPs delivered mRNA more efficiently to the liver, lung, spleen and brains of mice and to haematopoietic stem and progenitor cells in vitro than conventional LNPs. These experiments demonstrate that engineering LNP hydrolysis rates in vivo has great potential for expanding the medical applications of LNPs.
Neurological disorders are often debilitating conditions with no cure. The majority of current therapies are palliative rather than disease-modifying; therefore, new strategies for treating neurological disorders are greatly needed. mRNA-based therapeutics have great potential for treating such neurological disorders; however, challenges with delivery have limited their clinical potential. Lipid nanoparticles (LNPs) are a promising delivery vector for the brain, given their safer toxicity profile and higher efficacy. Despite this, very little is known about LNP-mediated delivery of mRNA into the brain. Here, we employ MC3-based LNPs and successfully deliver Cre mRNA and Cas9 mRNA/Ai9 sgRNA to the adult Ai9 mouse brain; greater than half of the entire striatum and hippocampus was found to be penetrated along the rostro-caudal axis by direct intracerebral injections of MC3 LNP mRNAs. MC3 LNP Cre mRNA successfully transfected cells in the striatum (∼52% efficiency) and hippocampus (∼49% efficiency). In addition, we demonstrate that MC3 LNP Cas9 mRNA/Ai9 sgRNA edited cells in the striatum (∼7% efficiency) and hippocampus (∼3% efficiency). Further analysis demonstrates that MC3 LNPs mediate mRNA delivery to multiple cell types including neurons, astrocytes, and microglia in the brain. Overall, LNP-based mRNA delivery is effective in brain tissue and shows great promise for treating complex neurological disorders.
- MeSH
- malá interferující RNA MeSH
- messenger RNA genetika MeSH
- mozek MeSH
- myši MeSH
- nanočástice * MeSH
- nemoci nervového systému * MeSH
- vodící RNA, systémy CRISPR-Cas MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH