The fate of pesticides in tropical soils is still not understood as well as it is for soils in temperate regions. In this study, water flow and transport of bromide tracer and five pesticides (atrazine, imazaquin, sulfometuron methyl, S-metolachlor, and imidacloprid) through an undisturbed soil column of tropical Oxisol were analyzed using a one-dimensional numerical model. The numerical model is based on Richards' equation for solving water flow, and the advection-dispersion equation for solving solute transport. Data from a laboratory column leaching experiment were used in the uncertainty analysis using a global optimization methodology to evaluate the model's sensitivity to transport parameters. All pesticides were found to be relatively mobile (sorption distribution coefficients lower than 2 cm(3) g(-1)). Experimental data indicated significant non-conservative behavior of bromide tracer. All pesticides, with the exception of imidacloprid, were found less persistent (degradation half-lives smaller than 45 days). Three of the five pesticides (atrazine, sulfometuron methyl, and S-metolachlor) were better described by the linear kinetic sorption model, while the breakthrough curves of imazaquin and imidacloprid were more appropriately approximated using nonlinear instantaneous sorption. Sensitivity analysis suggested that the model is most sensitive to sorption distribution coefficient. The prediction limits contained most of the measured points of the experimental breakthrough curves, indicating adequate model concept and model structure for the description of transport processes in the soil column under study. Uncertainty analysis using a physically-based Monte Carlo modeling of pesticide fate and transport provides useful information for the evaluation of chemical leaching in Hawaii soils.
- MeSH
- bromidy chemie MeSH
- chemické látky znečišťující vodu analýza MeSH
- herbicidy chemie MeSH
- insekticidy chemie MeSH
- látky znečišťující půdu chemie MeSH
- pohyb vody MeSH
- teoretické modely * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Havajské ostrovy MeSH
BACKGROUND: Physically based tier-II models may serve as possible alternatives to expensive field and laboratory leaching experiments required for pesticide approval and registration. The objective of this study was to predict pesticide fate and transport at five different sites in Hawaii using data from an earlier field leaching experiment and a one-dimensional tier-II model. As the predicted concentration profiles of pesticides did not provide close agreement with data, inverse modeling was used to obtain adequate reactive transport parameters. The estimated transport parameters of pesticides were also utilized in a tier-I model, which is currently used by the state authorities to evaluate the relative leaching potential. RESULTS: Water flow in soil profiles was simulated by the tier-II model with acceptable accuracy at all experimental sites. The observed concentration profiles and center of mass depths predicted by the tier-II simulations based on optimized transport parameters provided better agreements than did the non-optimized parameters. With optimized parameters, the tier-I model also delivered results consistent with observed pesticide center of mass depths. CONCLUSION: Tier-II numerical modeling helped to identify relevant transport processes in field leaching of pesticides. The process-based modeling of water flow and pesticide transport, coupled with the inverse procedure, can contribute significantly to the evaluation of chemical leaching in Hawaii soils.
- MeSH
- chemické látky znečišťující vodu analýza chemie MeSH
- chemické modely MeSH
- látky znečišťující půdu analýza chemie MeSH
- monitorování životního prostředí metody MeSH
- pesticidy analýza chemie MeSH
- počítačová simulace MeSH
- pohyb vody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Havajské ostrovy MeSH