Bacteroidaceae are common gut microbiota members in all warm-blooded animals. However, if Bacteroidaceae are to be used as probiotics, the species selected for different hosts should reflect the natural distribution. In this study, we therefore evaluated host adaptation of bacterial species belonging to the family Bacteroidaceae. B. dorei, B. uniformis, B. xylanisolvens, B. ovatus, B. clarus, B. thetaiotaomicron and B. vulgatus represented human-adapted species while B. gallinaceum, B. caecigallinarum, B. mediterraneensis, B. caecicola, M. massiliensis, B. plebeius and B. coprocola were commonly detected in chicken but not human gut microbiota. There were 29 genes which were present in all human-adapted Bacteroides but absent from the genomes of all chicken isolates, and these included genes required for the pentose cycle and glutamate or histidine metabolism. These genes were expressed during an in vitro competitive assay, in which human-adapted Bacteroides species overgrew the chicken-adapted isolates. Not a single gene specific for the chicken-adapted species was found. Instead, chicken-adapted species exhibited signs of frequent horizontal gene transfer, of KUP, linA and sugE genes in particular. The differences in host adaptation should be considered when the new generation of probiotics for humans or chickens is designed.
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Avian pathogenic Escherichia coli (APEC) can cause various extraintestinal infections in poultry, resulting in massive economic losses in poultry industry. In addition, some avian E. coli strains may have zoonotic potential, making poultry a possible source of infection for humans. Due to its extreme genetic diversity, this pathotype remains poorly defined. This study aimed to investigate the diversity of colibacillosis-associated E. coli isolates from Central European countries with a focus on the Czech Republic. RESULTS: Of 95 clinical isolates subjected to preliminary characterization, 32 were selected for whole-genome sequencing. A multi resistant phenotype was detected in a majority of the sequenced strains with the predominant resistance to β-lactams and quinolones being associated with TEM-type beta-lactamase genes and chromosomal gyrA mutations respectively. The phylogenetic analysis confirmed a great diversity of isolates, that were derived from nearly all phylogenetic groups, with predominace of B2, B1 and C phylogroups. Clusters of closely related isolates within ST23 (phylogroup C) and ST429 (phylogroup B2) indicated a possible local spread of these clones. Besides, the ST429 cluster carried blaCMY-2, - 59 genes for AmpC beta-lactamase and isolates of both clusters were generally well-equipped with virulence-associated genes, with considerable differences in distribution of certain virulence-associated genes between phylogenetically distant lineages. Other important and potentially zoonotic APEC STs were detected, incl. ST117, ST354 and ST95, showing several molecular features typical for human ExPEC. CONCLUSIONS: The results support the concept of local spread of virulent APEC clones, as well as of zoonotic potential of specific poultry-associated lineages, and highlight the need to investigate the possible source of these pathogenic strains.
- MeSH
- Escherichia coli klasifikace genetika izolace a purifikace patogenita MeSH
- fylogeneze MeSH
- genetická variace MeSH
- infekce vyvolané Escherichia coli mikrobiologie veterinární MeSH
- kur domácí MeSH
- nemoci drůbeže mikrobiologie MeSH
- sekvenování celého genomu MeSH
- virulence genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
Cyanobacteria represent a bacterial phyllum characteristic by the ability to photosynthesize. They are potentially applicable for the production of useful compounds but may also cause poisoning or at least health problems as they can produce cyanotoxins. The introduction of a fast methodology is important not only for fundamental taxonomic purposes, but also for reliable identifications in biological studies. In this work, we have used matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of intact cells to study Chroococcidiopsis strains. A library of the obtained reference mass spectra containing characteristic peptide/protein profiles was examined by software tools to characterize similarities and differences applicable for diagnostics and taxonomy. Both a similarity tree and heat map constructed from the mass spectrometric data proved consistent with 16S rRNA sequencing results. We show as novelty that a binary matrix combining ferulic and sinapinic acids performs well in acquiring reproducible mass spectra of cyanobacteria. Using the matrix solvent, a protein extraction from cells was done. After polyacrylamide gel electrophoresis, the separated protein fractions were in-gel digested and the resulting peptides analyzed by liquid chromatography coupled with tandem mass spectrometry. For the first time, photosystem protein components, phycobilisome proteins, electron transport proteins, nitrogen-metabolism and nucleic acids binding-proteins, cytochromes plus other enzymes and various uncharacterized proteins could be assigned to characteristic peaks in the mass spectrometric profiles and some of them suggested as markers in addition to 30S and 50S ribosomal proteins known from previous studies employing intact cell mass spectrometry of microorganisms.
- MeSH
- bakteriální proteiny analýza izolace a purifikace MeSH
- elektroforéza v polyakrylamidovém gelu MeSH
- fylogeneze MeSH
- peptidy analýza izolace a purifikace MeSH
- RNA ribozomální 16S genetika MeSH
- sinice chemie klasifikace genetika MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH