The nuclear receptors peroxisome proliferator-activated receptor γ (PPARγ) and its hetero-dimerization partner retinoid X receptor α (RXRα) are considered as drug targets in the treatment of diseases like the metabolic syndrome and diabetes mellitus type 2. Effort has been made to develop new agonists for PPARγ to obtain ligands with more favorable properties than currently used drugs. Magnolol was previously described as dual agonist of PPARγ and RXRα. Here we show the structure-based rational design of a linked magnolol dimer within the ligand binding domain of PPARγ and its synthesis. Furthermore, we evaluated its binding properties and functionality as a PPARγ agonist in vitro with the purified PPARγ ligand binding domain (LBD) and in a cell-based nuclear receptor transactivation model in HEK293 cells. We determined the synthesized magnolol dimer to bind with much higher affinity to the purified PPARγ ligand binding domain than magnolol (K i values of 5.03 and 64.42 nM, respectively). Regarding their potency to transactivate a PPARγ-dependent luciferase gene both compounds were equally effective. This is likely due to the PPARγ specificity of the newly designed magnolol dimer and lack of RXRα-driven transactivation activity by this dimeric compound.
- MeSH
- bifenylové sloučeniny chemická syntéza chemie farmakologie MeSH
- dimerizace * MeSH
- HEK293 buňky MeSH
- lidé MeSH
- ligandy MeSH
- lignany chemická syntéza chemie farmakologie MeSH
- pioglitazon farmakologie MeSH
- PPAR gama agonisté chemie metabolismus MeSH
- proteinové domény MeSH
- racionální návrh léčiv * MeSH
- retinoidní X receptor alfa metabolismus MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Leoligin is a natural lignan found in Edelweiss (Leontopodium nivale ssp. alpinum). The aim of this study was to examine its influence on cholesterol efflux and to address the underlying mechanism of action. Leoligin increases apo A1- as well as 1% human plasma-mediated cholesterol efflux in THP-1 macrophages without affecting cell viability as determined by resazurin conversion. Western blot analysis revealed that the protein levels of the cholesterol efflux transporters ABCA1 and ABCG1 were upregulated, whereas the SR-B1 protein level remained unchanged upon treatment with leoligin (10 μM, 24 h). Quantitative reverse transcription PCR further uncovered that leoligin also increased ABCA1 and ABCG1 mRNA levels without affecting the half-life of the two mRNAs in the presence of actinomycin D, a transcription inhibitor. Proteome analysis revealed the modulation of protein expression fingerprint in the presence of leoligin. Taken together, these results suggest that leoligin induces cholesterol efflux in THP-1-derived macrophages by upregulating ABCA1 and ABCG1 expression. This novel activity suggests leoligin as a promising candidate for further studies addressing a possible preventive or therapeutic application in the context of atherosclerosis.
- MeSH
- ABC transportéry metabolismus MeSH
- Asteraceae chemie MeSH
- ateroskleróza MeSH
- biologický transport MeSH
- daktinomycin farmakologie MeSH
- lidé MeSH
- lignany chemie izolace a purifikace farmakologie MeSH
- makrofágy metabolismus MeSH
- messenger RNA metabolismus MeSH
- molekulární struktura MeSH
- oxaziny metabolismus MeSH
- polymerázová řetězová reakce MeSH
- sirotčí receptory metabolismus MeSH
- western blotting MeSH
- xantheny metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH