Pseudomonas aeruginosa poses a significant threat to both immunocompetent and immunocompromised individuals, often resulting in life-threatening infections. With increasing antimicrobial resistance, novel therapeutic strategies are urgently needed. Although animal models are crucial for preclinical studies, limited data are available for porcine models, more specifically for P. aeruginosa complicated skin and soft tissue infections (cSSTIs). This study presents a novel porcine model inducing and sustaining cSSTI for 14 days. Six pigs (120 wounds) were used for the development of infections, and within this group, two pigs (40 wounds) were used to evaluate the progression of the cSSTI infection. The model demonstrated bacterial loads of more than 107 CFU/gram of tissue or higher. The cSSTI fully developed within three days and remained well above these levels until day 14 post-infection. Due to the immunocompetence of this model, all the immunological processes associated with the response to the presence of infection and the wound healing process are preserved.
Skin and soft tissue infections (SSTIs) represent a significant healthcare challenge, particularly in the context of increasing antibiotic resistance. This study investigates the efficacy of a novel therapeutic approach combining bacteriophage (phage) therapy with a gum Karaya (GK)-based hydrogel delivery system in a porcine model of deep staphylococcal SSTIs. The study exploits the lytic activity and safety of the Staphylococcus phage 812K1/420 of the Kayvirus genus, which is active against methicillin-resistant Staphylococcus aureus (MRSA). The GK injectable hydrogels and hydrogel films, developed by our research group, serve as effective, non-toxic, and easy-to-apply delivery systems, supporting moist wound healing and re-epithelialization. In the porcine model, the combined treatment showed asynergistic effect, leading to a significant reduction in bacterial load (2.5 log CFU/gram of tissue) within one week. Local signs of inflammation were significantly reduced by day 8, with clear evidence of re-epithelialization and wound contraction. Importantly, no adverse effects of the GK-based delivery system were observed throughout the study. The results highlight the potential of this innovative therapeutic approach to effectively treat deep staphylococcal SSTIs, providing a promising avenue for further research and clinical application in the field of infections caused by antibiotic-resistant bacteria.
- MeSH
- fágová terapie * metody MeSH
- hojení ran účinky léků MeSH
- hydrogely * aplikace a dávkování chemie MeSH
- infekce v ráně * terapie mikrobiologie farmakoterapie MeSH
- methicilin rezistentní Staphylococcus aureus * účinky léků MeSH
- modely nemocí na zvířatech * MeSH
- prasata MeSH
- rostlinné gumy chemie MeSH
- stafylokokové bakteriofágy MeSH
- stafylokokové infekce * terapie farmakoterapie MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH