Achondroplasia is the most common form of human dwarfism caused by mutations in the FGFR3 receptor tyrosine kinase. Current therapy begins at 2 years of age and improves longitudinal growth but does not address the cranial malformations including midface hypoplasia and foramen magnum stenosis, which lead to significant otolaryngeal and neurologic compromise. A recent clinical trial found partial restoration of cranial defects with therapy starting at 3 months of age, but results are still inconclusive. The benefits of achondroplasia therapy are therefore controversial, increasing skepticism among the medical community and patients. We used a mouse model of achondroplasia to test treatment protocols aligned with human studies. Early postnatal treatment (from day 1) was compared with late postnatal treatment (from day 4, equivalent to ~5 months in humans). Animals were treated with the FGFR3 inhibitor infigratinib and the effect on skeleton was thoroughly examined. We show that premature fusion of the skull base synchondroses occurs immediately after birth and leads to defective cranial development and foramen magnum stenosis in the mouse model to achondroplasia. This phenotype appears significantly restored by early infigratinib administration when compared with late treatment, which provides weak to no rescue. In contrast, the long bone growth is similarly improved by both early and late protocols. We provide clear evidence that immediate postnatal therapy is critical for normalization of skeletal growth in both the cranial base and long bones and the prevention of sequelae associated with achondroplasia. We also describe the limitations of early postnatal therapy, providing a paradigm-shifting argument for the development of prenatal therapy for achondroplasia.
- MeSH
- Achondroplasia * pathology drug therapy MeSH
- Skull pathology drug effects MeSH
- Humans MeSH
- Disease Models, Animal * MeSH
- Mice MeSH
- Receptor, Fibroblast Growth Factor, Type 3 * genetics metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
INTRODUCTION: Fibroblast growth factor 20 (Fgf20), a member of the Fgf9 subfamily, was identified as an important regulator of bone differentiation and homeostasis processes. However, the role of Fgf20 in bone physiology has not been approached yet. Here we present a comprehensive bone phenotype analysis of mice with functional ablation of Fgf20. METHODS: The study conducts an extensive analysis of Fgf20 knockout mice compared to controls, incorporating microCT scanning, volumetric analysis, Fgf9 subfamily expression and stimulation experiment and histological evaluation. RESULTS: The bone phenotype could be detected especially in the area of the lumbar and caudal part of the spine and in fingers. Regarding the spine, Fgf20-/- mice exhibited adhesions of the transverse process of the sixth lumbar vertebra to the pelvis as well as malformations in the distal part of their tails. Preaxial polydactyly and polysyndactyly in varying degrees of severity were also detected. High resolution microCT analysis of distal femurs and the fourth lumbar vertebra showed significant differences in structure and mineralization in both cortical and trabecular bone. These findings were histologically validated and may be associated with the expression of Fgf20 in chondrocytes and their progenitors. Moreover, histological sections demonstrated increased bone tissue formation, disruption of Fgf20-/- femur cartilage, and cellular-level alterations, particularly in osteoclasts. We also observed molar dysmorphology, including root taurodontism, and described variations in mineralization and dentin thickness. DISCUSSION: Our analysis provides evidence that Fgf20, together with other members of the Fgf9 subfamily, plays a crucial regulatory role in skeletal development and bone homeostasis.
- MeSH
- Phenotype MeSH
- Fibroblast Growth Factors * metabolism genetics MeSH
- Calcification, Physiologic MeSH
- Bone and Bones metabolism pathology diagnostic imaging abnormalities MeSH
- Mice, Inbred C57BL MeSH
- Mice, Knockout * MeSH
- Mice MeSH
- Osteogenesis MeSH
- X-Ray Microtomography MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
L-BC virus persists in the budding yeast Saccharomyces cerevisiae, whereas other viruses from the family Totiviridae infect a diverse group of organisms including protists, fungi, arthropods, and vertebrates. The presence of totiviruses alters the fitness of the host organisms, for example, by maintaining the killer system in yeast or increasing the virulence of Leishmania guyanensis. Despite the importance of totiviruses for their host survival, there is limited information about Totivirus structure and assembly. Here we used cryo-electron microscopy to determine the structure of L-BC virus to a resolution of 2.9 Å. The L-BC capsid is organized with icosahedral symmetry, with each asymmetric unit composed of two copies of the capsid protein. Decamers of capsid proteins are stabilized by domain swapping of the C-termini of subunits located around icosahedral fivefold axes. We show that capsids of 9% of particles in a purified L-BC sample were open and lacked one decamer of capsid proteins. The existence of the open particles together with domain swapping within a decamer provides evidence that Totiviridae capsids assemble from the decamers of capsid proteins. Furthermore, the open particles may be assembly intermediates that are prepared for the incorporation of the virus (+) strand RNA.
- MeSH
- Cryoelectron Microscopy MeSH
- Capsid metabolism MeSH
- Totivirus * chemistry genetics MeSH
- Capsid Proteins metabolism MeSH
- Viruses * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Objects: Health Behaviours in School-aged Children (HBSC) is an international survey programme aiming to investigate adolescents' health behaviours, subjective perception of health status, wellbeing, and the related contextual information. Our scoping review aimed to synthesise the evidence from HBSC about the relationship between family environmental contributors and adolescents' health-related outcomes. Methods: We searched previous studies from six electronic databases. Two researchers identified the qualified publications independently by abstract and full-text screening with the assistance of an NLP-based AI instrument, ASReview. Publications were included if they were based on HBSC data and investigated the effects of family environment on adolescents' health outcomes. Researches addressed family-related factors as mediators or moderators were also included. Results: A total of 241 articles were included. Family environmental contributors could be mapped into six categories: (1) Demographic backgrounds (N = 177); (2) General family's psycho-socio functions (N = 44); (3) Parenting behaviours (N = 100); (4) Parental health behaviours (N = 7); (5) Family activities (N = 24); and (6) Siblings (N = 7). Except for 75 papers that assessed family variables as moderators (N = 70) and mediators (N = 7), the others suggested family environment was an independent variable. Only five studies employed the data-driven approach. Conclusion: Our results suggest most research studies focussed on the influences of family demographic backgrounds on adolescents' health. The researches related to parental health behaviours and siblings are most inadequate. Besides, we recommend further research studies to focus on the mediator/moderator roles of the family, for exploring the deep mechanism of the family's impacts. Also, it would be valuable to consider data-driven analysis more in the future, as HBSC has mass variables and data.
- Publication type
- Journal Article MeSH
- Review MeSH
MicroRNA (miRNA) and RNA interference (RNAi) pathways rely on small RNAs produced by Dicer endonucleases. Mammalian Dicer primarily supports the essential gene-regulating miRNA pathway, but how it is specifically adapted to miRNA biogenesis is unknown. We show that the adaptation entails a unique structural role of Dicer's DExD/H helicase domain. Although mice tolerate loss of its putative ATPase function, the complete absence of the domain is lethal because it assures high-fidelity miRNA biogenesis. Structures of murine Dicer•-miRNA precursor complexes revealed that the DExD/H domain has a helicase-unrelated structural function. It locks Dicer in a closed state, which facilitates miRNA precursor selection. Transition to a cleavage-competent open state is stimulated by Dicer-binding protein TARBP2. Absence of the DExD/H domain or its mutations unlocks the closed state, reduces substrate selectivity, and activates RNAi. Thus, the DExD/H domain structurally contributes to mammalian miRNA biogenesis and underlies mechanistical partitioning of miRNA and RNAi pathways.
- MeSH
- MicroRNAs * genetics metabolism MeSH
- Mice MeSH
- Ribonuclease III * metabolism MeSH
- RNA Interference MeSH
- Mammals metabolism MeSH
- Carrier Proteins metabolism MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Comment MeSH
- Research Support, Non-U.S. Gov't MeSH
Maintenance of genome stability is essential for every living cell as genetic information is repeatedly challenged during DNA replication in each cell division event. Errors, defects, delays, and mistakes that arise during mitosis or meiosis lead to an activation of DNA repair processes and in case of their failure, programmed cell death, i.e. apoptosis, could be initiated. Fam208a is a protein whose importance in heterochromatin maintenance has been described recently. In this work, we describe the crucial role of Fam208a in sustaining genome stability during cellular division. The targeted depletion of Fam208a in mice using CRISPR/Cas9 led to embryonic lethality before E12.5. We also used the siRNA approach to downregulate Fam208a in zygotes to avoid the influence of maternal RNA in the early stages of development. This early downregulation increased arresting of the embryonal development at the two-cell stage and the occurrence of multipolar spindles formation. To investigate this further, we used the yeast two-hybrid (Y2H) system and identified new putative interaction partners Gpsm2, Svil, and Itgb3bp. Their co-expression with Fam208a was assessed by RT-qPCR profiling and in situ hybridization [1] in multiple murine tissues. Based on these results we proposed that Fam208a functions within the HUSH complex by interaction with Mphosph8 as these proteins are not only able to physically interact but also co-localise. We are bringing new evidence that Fam208a is a multi-interacting protein affecting genome stability on the cell division level at the earliest stages of development and by interaction with methylation complex in adult tissues. In addition to its epigenetic functions, Fam208a appears to have an important role in the zygotic division, possibly via interaction with newly identified putative partners Gpsm2, Svil, and Itgb3bp.
- MeSH
- CRISPR-Cas Systems MeSH
- Embryonic Development * MeSH
- Epigenesis, Genetic * MeSH
- Phosphoproteins genetics metabolism MeSH
- Nuclear Proteins antagonists & inhibitors physiology MeSH
- DNA Methylation MeSH
- Mitosis * MeSH
- Mice, Inbred C57BL MeSH
- Mice, Knockout MeSH
- Mice MeSH
- Genomic Instability * MeSH
- Pregnancy MeSH
- Animals MeSH
- Zygote physiology MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Pregnancy MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
WIZ (Widely Interspaced Zinc Finger) is associated with the G9a-GLP protein complex, a key H3K9 methyltransferase suggesting a role in transcriptional repression. However, its role in embryonic development is poorly described. In order to assess the loss of function of WIZ, we generated CRISPR/Cas9 WIZ knockout mouse model with 32 nucleotide deletion. Observing the lethality status, we identified the WIZ knockouts to be subviable during embryonic development and non-viable after birth. Morphology of developing embryo was analyzed at E14.5 and E18.5 and our findings were supported by microCT scans. Wiz KO showed improper development in multiple aspects, specifically in the craniofacial area. In particular, shorter snout, cleft palate, and cleft eyelids were present in mutant embryos. Palatal shelves were hypomorphic and though elevated to a horizontal position on top of the tongue, they failed to make contact and fuse. By comparison of proliferation pattern and histone methylation in developing palatal shelves we brought new evidence of importance WIZ dependent G9a-GLP methylation complex in craniofacial development, especially in palate shelf fusion.
- Publication type
- Journal Article MeSH
The choroid plexus (ChP) in each brain ventricle produces cerebrospinal fluid (CSF) and forms the blood-CSF barrier. Here, we construct a single-cell and spatial atlas of each ChP in the developing, adult, and aged mouse brain. We delineate diverse cell types, subtypes, cell states, and expression programs in epithelial and mesenchymal cells across ages and ventricles. In the developing ChP, we predict a common progenitor pool for epithelial and neuronal cells, validated by lineage tracing. Epithelial and fibroblast cells show regionalized expression by ventricle, starting at embryonic stages and persisting with age, with a dramatic transcriptional shift with maturation, and a smaller shift in each aged cell type. With aging, epithelial cells upregulate host-defense programs, and resident macrophages upregulate interleukin-1β (IL-1β) signaling genes. Our atlas reveals cellular diversity, architecture and signaling across ventricles during development, maturation, and aging of the ChP-brain barrier.
- MeSH
- Single-Cell Analysis MeSH
- Cell Differentiation genetics MeSH
- Cell Lineage genetics MeSH
- Epithelial Cells metabolism MeSH
- Blood-Brain Barrier metabolism MeSH
- Brain metabolism physiology MeSH
- Mice, Inbred C57BL MeSH
- Mice embryology MeSH
- Brain Diseases genetics physiopathology MeSH
- Choroid Plexus embryology metabolism physiology MeSH
- Signal Transduction MeSH
- Aging physiology MeSH
- Age Factors MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice embryology MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Leishmania parasites cause a variety of symptoms, including mucocutaneous leishmaniasis, which results in the destruction of the mucous membranes of the nose, mouth, and throat. The species of Leishmania carrying Leishmania RNA virus 1 (LRV1), from the family Totiviridae, are more likely to cause severe disease and are less sensitive to treatment than those that do not contain the virus. Although the importance of LRV1 for the severity of leishmaniasis was discovered a long time ago, the structure of the virus remained unknown. Here, we present a cryo-electron microscopy reconstruction of the virus-like particle of LRV1 determined to a resolution of 3.65 Å. The capsid has icosahedral symmetry and is formed by 120 copies of a capsid protein assembled in asymmetric dimers. RNA genomes of viruses from the family Totiviridae are synthetized, but not capped at the 5' end, by virus RNA polymerases. To protect viral RNAs from degradation, capsid proteins of the L-A totivirus cleave the 5' caps of host mRNAs, creating decoys to overload the cellular RNA quality control system. Capsid proteins of LRV1 form positively charged clefts, which may be the cleavage sites for the 5' cap of Leishmania mRNAs. The putative RNA binding site of LRV1 is distinct from that of the related L-A virus. The structure of the LRV1 capsid enables the rational design of compounds targeting the putative decapping site. Such inhibitors may be developed into a treatment for mucocutaneous leishmaniasis caused by LRV1-positive species of LeishmaniaIMPORTANCE Twelve million people worldwide suffer from leishmaniasis, resulting in more than 30 thousand deaths annually. The disease has several variants that differ in their symptoms. The mucocutaneous form, which leads to disintegration of the nasal septum, lips, and palate, is caused predominantly by Leishmania parasites carrying Leishmania RNA virus 1 (LRV1). Here, we present the structure of the LRV1 capsid determined using cryo-electron microscopy. Capsid proteins of a related totivirus, L-A virus, protect viral RNAs from degradation by cleaving the 5' caps of host mRNAs. Capsid proteins of LRV1 may have the same function. We show that the LRV1 capsid contains positively charged clefts that may be sites for the cleavage of mRNAs of Leishmania cells. The structure of the LRV1 capsid enables the rational design of compounds targeting the putative mRNA cleavage site. Such inhibitors may be used as treatments for mucocutaneous leishmaniasis.