Angiogenesis is the process of new blood vessels growing from existing vasculature. Visualizing them as a three-dimensional (3D) model is a challenging, yet relevant, task as it would be of great help to researchers, pathologists, and medical doctors. A branching analysis on the 3D model would further facilitate research and diagnostic purposes. In this paper, a pipeline of vision algorithms is elaborated to visualize and analyze blood vessels in 3D from formalin-fixed paraffin-embedded (FFPE) granulation tissue sections with two different staining methods. First, a U-net neural network is used to segment blood vessels from the tissues. Second, image registration is used to align the consecutive images. Coarse registration using an image-intensity optimization technique, followed by finetuning using a neural network based on Spatial Transformers, results in an excellent alignment of images. Lastly, the corresponding segmented masks depicting the blood vessels are aligned and interpolated using the results of the image registration, resulting in a visualized 3D model. Additionally, a skeletonization algorithm is used to analyze the branching characteristics of the 3D vascular model. In summary, computer vision and deep learning is used to reconstruct, visualize and analyze a 3D vascular model from a set of parallel tissue samples. Our technique opens innovative perspectives in the pathophysiological understanding of vascular morphogenesis under different pathophysiological conditions and its potential diagnostic role.
Mutations in the filaggrin (FLG) gene are strongly associated with common dermatological disorders such as atopic dermatitis. However, the exact underlying pathomechanism is still ambiguous. Here, we investigated the impact of FLG on skin lipid composition, organization, and skin acidification using a FLG knockdown (FLG-) skin construct. Initially, sodium/hydrogen antiporter (NHE-1) activity was sufficient to maintain the acidic pH (5.5) of the reconstructed skin. At day 7, the FLG degradation products urocanic (UCA) and pyrrolidone-5-carboxylic acid (PCA) were significantly decreased in FLG- constructs, but the skin surface pH was still physiological owing to an upregulation of NHE-1. At day 14, secretory phospholipase A2 (sPLA2) IIA, which converts phospholipids to fatty acids, was significantly more activated in FLG- than in FLG+. Although NHE-1 and sPLA2 were able to compensate the FLG deficiency, maintain the skin surface pH, and ensured ceramide processing (no differences detected), an accumulation of free fatty acids (2-fold increase) led to less ordered intercellular lipid lamellae and higher permeability of the FLG- constructs. The interplay of the UCA/PCA and the sPLA2/NHE-1 acidification pathways of the skin and the impact of FLG insufficiency on skin lipid composition and organization in reconstructed skin are described.
- MeSH
- atopická dermatitida metabolismus patologie MeSH
- fosfolipasy A2, skupina II metabolismus MeSH
- genový knockdown MeSH
- koncentrace vodíkových iontů MeSH
- kůže cytologie metabolismus MeSH
- kyselina pyrrolidonkarboxylová metabolismus MeSH
- kyselina urokanová metabolismus MeSH
- kyseliny mastné neesterifikované metabolismus MeSH
- kyseliny metabolismus MeSH
- lidé MeSH
- metabolismus lipidů fyziologie MeSH
- Na(+)-H(+) antiport metabolismus MeSH
- permeabilita MeSH
- proteiny intermediálních filament nedostatek genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH