BACKGROUND: Genetically divergent cryptic species are frequently detected by molecular methods. These discoveries are often a byproduct of molecular barcoding studies in which fragments of a selected marker are used for species identification. Highly divergent mitochondrial lineages and putative cryptic species are even detected in intensively studied animal taxa, such as the crustacean genus Daphnia. Recently, eleven such lineages, exhibiting genetic distances comparable to levels observed among well-defined species, were recorded in the D. longispina species complex, a group that contains several key taxa of freshwater ecosystems. We tested if three of those lineages represent indeed distinct species, by analyzing patterns of variation of ten nuclear microsatellite markers in six populations. RESULTS: We observed a discordant pattern between mitochondrial and nuclear DNA, as all individuals carrying one of the divergent mitochondrial lineages grouped at the nuclear level with widespread, well-recognized species coexisting at the same localities (Daphnia galeata, D. longispina, and D. cucullata). CONCLUSIONS: A likely explanation for this pattern is the introgression of the mitochondrial genome of undescribed taxa into the common species, either in the distant past or after long-distance dispersal. The occurrence of highly divergent but rare mtDNA lineages in the gene pool of widespread species would suggest that hybridization and introgression in the D. longispina species complex is frequent even across large phylogenetic distances, and that discoveries of such distinct clades must be interpreted with caution. However, maintenance of ancient polymorphisms through selection is another plausible alternative that may cause the observed discordance and cannot be entirely excluded.
- MeSH
- buněčné jádro genetika MeSH
- Daphnia genetika MeSH
- druhová specificita MeSH
- fylogeneze * MeSH
- genetická variace * MeSH
- hybridizace genetická MeSH
- mikrosatelitní repetice genetika MeSH
- mitochondriální DNA genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Genetic data has become an essential part of ecological studies, because the analyses of diversity within and among natural populations may grant access to previously overlooked ecological and evolutionary causalities, especially among cryptic species. Here, we present an example of how phylogenetic analysis of molecular data obtained within a DNA barcoding study, in combination with morphological and ecological data from the field and laboratory experiments, unraveled a striking predator-prey interaction between aquatic organisms. The "crown of thorns," a conspicuous morphological feature among water fleas of the Daphnia atkinsoni species complex (Crustacea: Cladocera), is considered to represent a species-specific trait. However, our study, initiated by the analysis of sequence variation in 2 mitochondrial genes, shows that this feature is phenotypically plastic and is induced by chemical cues released by Triops cancriformis, the tadpole shrimp (Notostraca). The trait acts as an effective antipredator defense, and is found in several Daphnia lineages coexisting with notostracans. These facts suggest that the "crown of thorns" evolved in coexistence with this ancient predator group.
- MeSH
- anatomické modely MeSH
- biologická evoluce MeSH
- biologické modely MeSH
- buněčný rodokmen MeSH
- Cladocera MeSH
- Daphnia anatomie a histologie fyziologie metabolismus MeSH
- ekologie MeSH
- fenotyp MeSH
- financování organizované MeSH
- fylogeneze MeSH
- lidé MeSH
- mitochondriální DNA metabolismus MeSH
- potravní řetězec MeSH
- predátorské chování MeSH
- respirační komplex IV metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH