Congenital anomalies, diseases, and injuries may result in osteochondral damage. Recently, a big hope has been given to somatic stem cells (SSCs) which are characterized as undifferentiated cells with an ability of long-term self-renewing and plasticity. They are adherent with a fibroblast-like morphology in vitro and express various surface markers (e.g. CD29, CD73, CD90, and CD105), but they are negative for CD31, CD34, CD45, and HLA-DR. SSCs secrete various bioactive molecules, which are involved in processes of regeneration. The main goal of the present study was the characterization and comparison of biological properties of SSCs obtained from adipose tissue, dental pulp, and urine concerning osteochondral regeneration. SSCs were maintained in an appropriate growth medium up to the third passage and were analyzed by light and electron microscope. The immunophenotype was analyzed by flow cytometry. The kinetics of proliferation was measured by MTT assay. Human Cytokine/Chemokine Multiplex Assay was used, and SSCs secretory profile was measured by Luminex MAGPIX® Instrument. Pellet cultures and a chondrogenic medium were used to induce chondrogenic differentiation. Osteogenic differentiation was induced by the osteogenic medium. Chondrogenic and osteogenic differentiation was analyzed by real-time PCR. SSCs had similar fibroblast-like morphology. They have similar kinetics of proliferation. SSCs shared the expression CD29, CD44, CD73, CD90, and CD105. They lack expression of CD29 and CD34. SSCs secerned similar levels of IL10 and IL18 while differing in IFN-gamma, IL6, IL8, MCP-1, and RANTES production. SSCs possess a similar capacity for chondrogenic differentiation but slightly differ in osteogenic differentiation. In conclusion, it can be emphasized that SSCs from adipose tissue, dental pulp, and urine share the majority of cellular characteristics typical for SSCs and have great potential to be used in osteochondral tissue regeneration.
- MeSH
- buněčná diferenciace MeSH
- dospělé kmenové buňky * MeSH
- kultivované buňky MeSH
- lidé MeSH
- mezenchymální kmenové buňky * metabolismus MeSH
- osteogeneze MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The rapid development of tissue engineering (TE) and regenerative medicine brings an acute need for biocompatible and bioactive biological scaffolds to regenerate or restore damaged tissue. Great attention is focused on the decellularization of tissues or even whole organs, and the subsequent colonization of such decellularized extracellular matrices by recipient cells. The foreskin is an integral, normal part of the external genitalia that forms the anatomical covering of the glans penis and the urinary meatus of all human and non-human primates. It is mucocutaneous tissue that marks the boundary between mucosa and skin. In this work, we compared two innovative decellularization techniques for human foreskins obtained from donors. We compared the efficacy and feasibility of these protocols and the biosafety of prepared acellular dermal matrixes that can serve as a suitable scaffold for TE. The present study confirms the feasibility of foreskin decellularization based on enzymatic or detergent methods. Both techniques conserved the ultrastructure and composition of natural ECM while being DNA-free and non-toxic, making it an excellent scaffold for follow-up research and TE applications.
- MeSH
- extracelulární matrix MeSH
- lidé MeSH
- předkožka * MeSH
- regenerativní lékařství metody MeSH
- tkáňové inženýrství * metody MeSH
- tkáňové podpůrné struktury MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH