Abscisic acid (ABA) play a crucial role in plant acclimation to heavy-metals stresses. Nevertheless, the effects of ABA on long-distance transport and its consequences for cadmium (Cd) accumulation are insufficiently understood. Here, we investigated the effects of ABA on the development of the whole-plant water transport pathway and implications for Cd uptake and transport to the shoot of Sedum alfredii. Exposure to Cd stimulated the production of endogenous ABA levels in the non-hyperaccumulating ecotype (NHE), but not in the hyperaccumulating ecotype (HE). Increased ABA levels in NHE significantly reduced aquaporin expressions in roots, the number of xylem vessel in stem, dimensions and densities of stomata in leaves, but induced leaf osmotic adjustment. Furthermore, the ABA-driven modifications in NHE plants showed typically higher sensitivity to ABA content in leaves compared to HE, illustrating ecotype-specific responses to ABA level. In NHE, the ABA-mediated modifications primarily affected the xylem transport of Cd ions and, at the cost of considerable water delivery limitations, significantly reduced delivery of Cd ions to shoots. In contrast, maintenance of low ABA levels in HE failed to t limit transpiration rates and maximized Cd accumulation in shoots. Our results demonstrated that ABA regulates Cd hyperaccumulation of S. alfredii through specific modifications in the water transport continuum.
- MeSH
- kadmium MeSH
- kořeny rostlin MeSH
- kyselina abscisová MeSH
- Sedum * MeSH
- voda MeSH
- Publikační typ
- časopisecké články MeSH
Abscisic acid (ABA) is a key phytohormone underlying plant resistance to toxic metals. However, regulatory effects of ABA on apoplastic transport in roots and consequences for uptake of metal ions are poorly understood. Here, we demonstrate how ABA regulates development of apoplastic barriers in roots of two ecotypes of Sedum alfredii and assess effects on cadmium (Cd) uptake. Under Cd treatment, increased endogenous ABA level was detected in roots of nonhyperaccumulating ecotype (NHE) due to up-regulated expressions of ABA biosynthesis genes (SaABA2, SaNCED), but no change was observed in hyperaccumulating ecotype (HE). Simultaneously, endodermal Casparian strips (CSs) and suberin lamellae (SL) were deposited closer to root tips of NHE compared with HE. Interestingly, the vessel-to-CSs overlap was identified as an ABA-driven anatomical trait. Results of correlation analyses and exogenous applications of ABA/Abamine indicate that ABA regulates development of both types of apoplastic barriers through promoting activities of phenylalanine ammonialyase, peroxidase, and expressions of suberin-related genes (SaCYP86A1, SaGPAT5, and SaKCS20). Using scanning ion-selected electrode technique and PTS tracer confirmed that ABA-promoted deposition of CSs and SL significantly reduced Cd entrance into root stele. Therefore, maintenance of low ABA levels in HE minimized deposition of apoplastic barriers and allowed maximization of Cd uptake via apoplastic pathway.
- MeSH
- biologický transport genetika fyziologie MeSH
- kadmium metabolismus MeSH
- kořeny rostlin anatomie a histologie metabolismus MeSH
- kyselina abscisová metabolismus MeSH
- lipidy genetika MeSH
- regulace genové exprese u rostlin MeSH
- regulátory růstu rostlin genetika metabolismus MeSH
- Sedum genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH