We studied the clinical, histologic, and molecular features distinguishing DSA-negative from DSA-positive molecularly defined antibody-mediated rejection (mABMR). We analyzed mABMR biopsies with available DSA assessments from the INTERCOMEX study: 148 DSA-negative versus 248 DSA-positive, compared with 864 no rejection (excluding TCMR and Mixed). DSA-positivity varied with mABMR stage: early-stage (EABMR) 56%; fully developed (FABMR) 70%; and late-stage (LABMR) 58%. DSA-negative patients with mABMR were usually sensitized, 60% being HLA antibody-positive. Compared with DSA-positive mABMR, DSA-negative mABMR was more often C4d-negative; earlier by 1.5 years (average 2.4 vs. 3.9 years); and had lower ABMR activity and earlier stage in molecular and histology features. However, the top ABMR-associated transcripts were identical in DSA-negative versus DSA-positive mABMR, for example, NK-associated (e.g., KLRD1 and GZMB) and IFNG-inducible (e.g., PLA1A). Genome-wide class comparison between DSA-negative and DSA-positive mABMR showed no significant differences in transcript expression except those related to lower intensity and earlier time of DSA-negative ABMR. Three-year graft loss in DSA-negative mABMR was the same as DSA-positive mABMR, even after adjusting for ABMR stage. Thus, compared with DSA-positive mABMR, DSA-negative mABMR is on average earlier, less active, and more often C4d-negative but has similar graft loss, and genome-wide analysis suggests that it involves the same mechanisms. SUMMARY SENTENCE: In 398 kidney transplant biopsies with molecular antibody-mediated rejection, the 150 DSA-negative cases are earlier, less intense, and mostly C4d-negative, but use identical molecular mechanisms and have the same risk of graft loss as the 248 DSA-positive cases.
- MeSH
- biopsie MeSH
- dárci tkání MeSH
- isoprotilátky MeSH
- lidé MeSH
- protilátky MeSH
- rejekce štěpu diagnóza etiologie MeSH
- transplantace ledvin * škodlivé účinky MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
All transplanted kidneys are subjected to some degree of injury as a result of the donation-implantation process and various post-transplant stresses such as rejection. Because transplants are frequently biopsied, they present an opportunity to explore the full spectrum of kidney response-to-wounding from all causes. Defining parenchymal damage in transplanted organs is important for clinical management because it determines function and survival. In this study, we classified the scenarios associated with parenchymal injury in genome-wide microarray results from 1,526 kidney transplant indication biopsies collected during the INTERCOMEX study. We defined injury groups by using archetypal analysis (AA) of scores for gene sets and classifiers previously identified in various injury states. Six groups and their characteristics were defined in this population: No injury, minor injury, two classes of acute kidney injury ("AKI," AKI1, and AKI2), chronic kidney disease (CKD), and CKD combined with AKI. We compared the two classes of AKI, namely, AKI1 and AKI2. AKI1 had a poor function and increased parenchymal dedifferentiation but minimal response-to-injury and inflammation, instead having increased expression of PARD3, a gene previously characterized as being related to epithelial polarity and adherens junctions. In contrast, AKI2 had a poor function and increased response-to-injury, significant inflammation, and increased macrophage activity. In random forest analysis, the most important predictors of function (estimated glomerular filtration rate) and graft loss were injury-based molecular scores, not rejection scores. AKI1 and AKI2 differed in 3-year graft survival, with better survival in the AKI2 group. Thus, injury archetype analysis of injury-induced gene expression shows new heterogeneity in kidney response-to-wounding, revealing AKI1, a class of early transplants with a poor function but minimal inflammation or response to injury, a deviant response characterized as PC3, and an increased risk of failure. Given the relationship between parenchymal injury and kidney survival, further characterization of the injury phenotypes in kidney transplants will be important for an improved understanding that could have implications for understanding native kidney diseases (ClinicalTrials.gov #NCT01299168).
- Publikační typ
- časopisecké články MeSH
BACKGROUND: BK nephropathy (BKN) in kidney transplants diagnosed by histology is challenging because it involves damage from both virus activity and cognate T cell-mediated inflammation, directed against alloantigens (rejection) or viral antigens. The present study of indication biopsies from the Integrated Diagnostic System in the International Collaborative Microarray Study Extension study measured major capsid viral protein 2 (VP2) mRNA to assess virus activity and a T cell-mediated rejection (TCMR) classifier to assess cognate T cell-mediated inflammation. METHODS: Biopsies were assessed by local standard-of-care histology and by genome-wide microarrays and Molecular Microscope Diagnostic System (MMDx) algorithms to detect rejection and injury. In a subset of 102 biopsies (50 BKN and 52 BKN-negative biopsies with various abnormalities), we measured VP2 transcripts by real-time polymerase chain reaction. RESULTS: BKN was diagnosed in 55 of 1679 biopsies; 30 had cognate T cell-mediated activity assessed by by MMDx and TCMR lesions, but only 3 of 30 were histologically diagnosed as TCMR. We developed a BKN probability classifier that predicted histologic BKN (area under the curve = 0.82). Virus activity (VP2 expression) was highly selective for BKN (area under the curve = 0.94) and correlated with acute injury, atrophy-fibrosis, macrophage activation, and the BKN classifier, but not with the TCMR classifier. BKN with molecular TCMR had more tubulitis and inflammation than BKN without molecular TCMR. In 5 BKN cases with second biopsies, VP2 mRNA decreased in second biopsies, whereas in 4 of 5 TCMR classifiers, scores increased. Genes and pathways associated with BKN and VP2 mRNA were similar, reflecting injury, inflammation, and macrophage activation but none was selective for BKN. CONCLUSIONS: Risk-benefit decisions in BKN may be assisted by quantitative assessment of the 2 major pathologic processes, virus activity and cognate T cell-mediated inflammation.
- MeSH
- biopsie MeSH
- lidé MeSH
- Polyomavirus * MeSH
- rejekce štěpu MeSH
- T-lymfocyty MeSH
- transplantace ledvin * škodlivé účinky MeSH
- zánět diagnóza MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Donor -specific HLA antibody (DSA) is present in many kidney transplant patients whose biopsies are classified as no rejection (NR). We explored whether in some NR kidneys DSA has subtle effects not currently being recognized. METHODS: We used microarrays to examine the relationship between standard-of-care DSA and rejection-related transcript increases in 1679 kidney transplant indication biopsies in the INTERCOMEX study (ClinicalTrials.gov NCT01299168), focusing on biopsies classified as NR by automatically assigned archetypal clustering. DSA testing results were available for 835 NR biopsies and were positive in 271 (32%). RESULTS: DSA positivity in NR biopsies was associated with mildly increased expression of antibody-mediated rejection (ABMR)-related transcripts, particularly IFNG-inducible and NK cell transcripts. We developed a machine learning DSA probability (DSAProb) classifier based on transcript expression in biopsies from DSA-positive versus DSA-negative patients, assigning scores using 10-fold cross-validation. This DSAProb classifier was very similar to a previously described "ABMR probability" classifier trained on histologic ABMR in transcript associations and prediction of molecular or histologic ABMR. Plotting the biopsies using Uniform Manifold Approximation and Projection revealed a gradient of increasing molecular ABMR-like transcript expression in NR biopsies, associated with increased DSA (P<2 × 10-16). In biopsies with no molecular or histologic rejection, increased DSAProb or ABMR probability scores were associated with increased risk of kidney failure over 3 years. CONCLUSIONS: Many biopsies currently considered to have no molecular or histologic rejection have mild increases in expression of ABMR-related transcripts, associated with increasing frequency of DSA. Thus, mild molecular ABMR-related pathology is more common than previously realized.
- MeSH
- analýza hlavních komponent MeSH
- analýza přežití MeSH
- biopsie MeSH
- čipová analýza tkání MeSH
- dárci tkání * MeSH
- exprese genu MeSH
- falešně negativní reakce MeSH
- genetická transkripce MeSH
- HLA antigeny imunologie MeSH
- isoprotilátky imunologie MeSH
- ledviny patologie MeSH
- přežívání štěpu MeSH
- prospektivní studie MeSH
- rejekce štěpu genetika MeSH
- specificita protilátek MeSH
- transplantace ledvin * MeSH
- transplantáty patologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH