Blood-feeding parasites are inadvertently exposed to high doses of potentially cytotoxic haem liberated upon host blood digestion. Detoxification of free haem is a special challenge for ticks, which digest haemoglobin intracellularly. Ticks lack a haem catabolic mechanism, mediated by haem oxygenase, and need to dispose of vast majority of acquired haem via its accumulation in haemosomes. The knowledge of individual molecules involved in the maintenance of haem homeostasis in ticks is still rather limited. RNA-seq analyses of the Ixodes ricinus midguts from blood- and serum-fed females identified an abundant transcript of glutathione S-transferase (gst) to be substantially up-regulated in the presence of red blood cells in the diet. Here, we have determined the full sequence of this encoding gene, ir-gst1, and found that it is homologous to the delta-/epsilon-class of GSTs. Phylogenetic analyses across related chelicerates revealed that only one clear IrGST1 orthologue could be found in each available transcriptome from hard and soft ticks. These orthologues create a well-supported clade clearly separated from other ticks' or mites' delta-/epsilon-class GSTs and most likely evolved as an adaptation to tick blood-feeding life style. We have confirmed that IrGST1 expression is induced by dietary haem(oglobin), and not by iron or other components of host blood. Kinetic properties of recombinant IrGST1 were evaluated by model and natural GST substrates. The enzyme was also shown to bind haemin in vitro as evidenced by inhibition assay, VIS spectrophotometry, gel filtration, and affinity chromatography. In the native state, IrGST1 forms a dimer which further polymerises upon binding of excessive amount of haemin molecules. Due to susceptibility of ticks to haem as a signalling molecule, we speculate that the expression of IrGST1 in tick midgut functions as intracellular buffer of labile haem pool to ameliorate its cytotoxic effects upon haemoglobin intracellular hydrolysis.
- MeSH
- fylogeneze * MeSH
- glutathiontransferasa * biosyntéza chemie genetika MeSH
- hemoglobiny chemie metabolismus MeSH
- klíště * enzymologie genetika MeSH
- proteiny členovců * biosyntéza chemie genetika MeSH
- regulace genové exprese enzymů fyziologie MeSH
- substrátová specifita MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Ticks cause massive damage to livestock and vaccines are one sustainable substitute for the acaricides currently heavily used to control infestations. To guide antigen discovery for a vaccine that targets the gamut of parasitic strategies mediated by tick saliva and enables immunological memory, we exploited a transcriptome constructed from salivary glands from all stages of Rhipicephalus microplus ticks feeding on genetically tick-resistant and susceptible bovines. RESULTS: Different levels of host anti-tick immunity affected gene expression in tick salivary glands; we thus selected four proteins encoded by genes weakly expressed in ticks attempting to feed on resistant hosts or otherwise abundantly expressed in ticks fed on susceptible hosts; these sialoproteins mediate four functions of parasitism deployed by male ticks and that do not induce antibodies in naturally infected, susceptible bovines. We then evaluated in tick-susceptible heifers an alum-adjuvanted vaccine formulated with recombinant proteins. Parasite performance (i.e. weight and numbers of females finishing their parasitic cycle) and titres of antigen-specific antibodies were significantly reduced or increased, respectively, in vaccinated versus control heifers, conferring an efficacy of 73.2%; two of the antigens were strong immunogens, rich in predicted T-cell epitopes and challenge infestations boosted antibody responses against them. CONCLUSION: Mining sialotranscriptomes guided by the immunity of tick-resistant hosts selected important targets and infestations boosted immune memory against salivary antigens.
- MeSH
- antigeny biosyntéza MeSH
- infestace klíšťaty parazitologie MeSH
- objevování léků MeSH
- proteiny členovců biosyntéza MeSH
- Rhipicephalus fyziologie MeSH
- slinné proteiny a peptidy biosyntéza MeSH
- stanovení celkové genové exprese * MeSH
- vakcíny izolace a purifikace MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The ability of ticks to act as vectors for a wide range of serious human and animal infectious diseases is apparently linked to the insufficiency of the tick immune system to effectively eliminate pathogens they transmit. At the tick-pathogen interface, an important role is presumably played by components of an ancient complement system that includes a repertoire of thioester-containing proteins (TEPs), which in Ixodes sp. comprises three α2-macroglobulins (A2M), three C3 complement component-related molecules (C3), two macroglobulin complement-related (Mcr) and one insect-type TEPs (Tep). In order to assess the function of TEPs in tick immunity, a quantitative real-time PCR expression analysis of tick TEPs was performed at various developmental stages of Ixodes ricinus, and in tissues dissected from adult females. Expression of TEP genes was mostly tissue specific; IrA2M1, IrC3-1, IrC3-3 were found to be expressed in cells of tick fat body adjacent to the tracheal trunks, IrA2M2 in hemocytes, IrTep in ovaries, IrMcr1 in salivary glands and only IrA2M3, IrC3-2 and IrMcr2 mRNAs were present in multiple organs. Expression of tick TEPs was further examined in response to injection of model microbes representing Gram-negative, Gram-positive bacteria and yeast. The greatest expression induction was observed for IrA2M1 and IrC3-1 after challenge with the yeast Candida albicans. Phagocytosis of the yeast was strongly dependent on an active thioester bond and the subsequent silencing of individual tick TEPs by RNA interference demonstrated the involvement of IrC3-1 and IrMcr2. This result suggests the existence of a distinct complement-like pathway, different from that leading to phagocytosis of Gram-negative bacteria. Understanding of the tick immune response against model microbes should provide new concepts for investigating interactions between ticks and relevant tick-borne pathogens.
- MeSH
- Candida albicans imunologie MeSH
- fagocytóza imunologie MeSH
- gramnegativní bakterie imunologie MeSH
- grampozitivní bakterie imunologie MeSH
- hemolymfa imunologie MeSH
- klíště genetika imunologie MeSH
- malá interferující RNA MeSH
- proteiny členovců biosyntéza genetika imunologie MeSH
- RNA interference MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Limulus Clotting Factor C is a multi-domain serine protease that triggers horseshoe crab hemolymph clotting in the presence of trace amounts of bacterial lipopolysaccharides. Here we describe and functionally characterize an homologous molecule, designated as IrFC, from the hard tick Ixodes ricinus. Tick Factor C consists of an N-terminal cysteine-rich domain, four complement control protein (sushi) modules, an LCCL domain, a truncated C-lectin domain and a C-terminal trypsin-type domain. Developmental expression profiling by quantitative real-time PCR revealed that the irfc mRNA is expressed in all stages including eggs. In tissues dissected from adult I. ricinus females, the irfc mRNA is present mainly in tick hemocytes and accordingly, indirect immunofluorescence microscopy localized IrFC intracellularly, in tick hemocytes. Irfc mRNA levels were markedly increased upon injection of sterile saline, or different microbes, demonstrating that the irfc gene transcription occurs in response to injury. This indicates a possible role of IrFC in hemolymph clotting and/or wound healing, although these defense mechanisms have not been yet definitely demonstrated in ticks. RNAi silencing of irfc expression resulted in a significant reduction in phagocytic activity of tick hemocytes against the Gram-negative bacteria Chryseobacterium indologenes and Escherichia coli, but not against the yeast, Candida albicans. This result suggests that IrFC plays a role in the tick primordial complement system and as such possibly mediates transmission of tick-borne pathogens.
- MeSH
- Borrelia imunologie MeSH
- Candida albicans imunologie MeSH
- Escherichia coli imunologie MeSH
- exprese genu MeSH
- fagocytóza MeSH
- klíště enzymologie genetika imunologie mikrobiologie MeSH
- komplement fyziologie MeSH
- messenger RNA biosyntéza genetika MeSH
- Micrococcus luteus imunologie MeSH
- molekulární sekvence - údaje MeSH
- prekurzory enzymů biosyntéza genetika MeSH
- přirozená imunita MeSH
- proteiny členovců biosyntéza genetika MeSH
- serinové endopeptidasy biosyntéza genetika MeSH
- upregulace imunologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH