Oxidored-nitro domain-containing protein 1 (NOR1) is a critical tumour suppressor gene, though its regulatory mechanism in oxidative stress of glioblastoma (GBM) remains unclear. Hence, further study is needed to unravel the function of NOR1 in the progression of oxidative stress in GBM. In this study, we evaluated the expression of NOR1 and nuclear respiratory factor 1 (NRF1) in GBM tissue and normal brain tissue (NBT) using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot (WB), and investigated their relationship. We then induced oxidative stress in U251 cells through H2O2 treatment and conducted Cell Count-ing Kit-8, Transwell and wound healing assays to analyse cell proliferation, invasion and migration. Cell apoptosis was assessed by flow cytometry and TUNEL staining. We also measured the activities of superoxide dismutase and catalase, as well as the level of reactive oxygen species (ROS) using biochemical techniques. Via qRT-PCR and WB, the mRNA and protein expression levels of NOR1 and NRF1 were determined. Chromatin immunoprecipitation (ChIP) assays were applied to validate NRF1's interaction with NOR1. Our results showed that the expression of NOR1 and NRF1 was low in GBM, and their expression levels were positively correlated. H2O2-induced oxidative stress reduced NRF1 and NOR1 expression levels and increased the ROS level. The ChIP assay confirmed the binding of NRF1 to NOR1. Over-expression of NRF1 attenuated the inhibitory effect of oxidative stress on the proliferation, migration and invasion of U251 cells, which was reversed by knockdown of NOR1.
- MeSH
- glioblastom * genetika MeSH
- lidé MeSH
- oxidační stres MeSH
- peroxid vodíku farmakologie MeSH
- proliferace buněk MeSH
- reaktivní formy kyslíku MeSH
- transkripční faktor NRF1 * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The present study was designed to characterize bovine oocytes with different meiotic competence and atresia levels in terms of their mitochondrial status. Oocyte subpopulations were recovered either from medium (MF) or small (SF) follicles and categorized as healthy, light-atretic and mid-atretic according to oocyte morphology. Mitochondrial activity, morphology and distribution, adenosine triphosphate (ATP) content and expression of mitochondrial transcription factor A (TFAM) and nuclear respiratory factor 1 (NRF1) were assessed before (GV) and after (MII) maturation. The data were related to follicular size regardless of or with regard to oocyte atresia. Regardless of atresia, the MF subpopulation showed a significantly higher mitochondrial activity and frequency of oocytes with granulated mitochondria at GV and clustered mitochondria at MII than the SF subpopulation. With regard to atresia, mitochondrial activity decreased from healthy to mid-atretic oocytes in both MF and SF subpopulations at GV, but in the SF subpopulation at MII, the mitochondrial activity and frequency of oocytes with clustered mitochondria were significantly higher in light-atretic than in healthy oocytes. The light-atretic oocytes also produced more ATP than healthy ones in both SF and MF subpopulations. However, a significantly higher relative abundance of mRNA TFAM was found in SF than MF subpopulations at GV, and this difference remained in mid-atretic oocytes at MII. It can be concluded that meiotic competence and atresia level influence mitochondrial status of immature bovine oocytes. After maturation, healthy oocytes from medium follicles and light-atretic oocytes from small follicles were more developed in terms of mitochondrial status than the other oocytes.
- MeSH
- adenosintrifosfát analýza MeSH
- DNA vazebné proteiny analýza genetika MeSH
- folikulární atrézie fyziologie MeSH
- meióza * MeSH
- messenger RNA analýza MeSH
- mitochondriální proteiny analýza genetika MeSH
- mitochondrie fyziologie ultrastruktura MeSH
- oocyty metabolismus ultrastruktura MeSH
- ovariální folikul chemie MeSH
- skot * MeSH
- transkripční faktor NRF1 analýza genetika MeSH
- transkripční faktory analýza genetika MeSH
- zvířata MeSH
- Check Tag
- skot * MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH