Familial dysautonomia is a debilitating congenital neurodegenerative disorder with no causative therapy. It is caused by a homozygous mutation in ELP1 gene, resulting in the production of the transcript lacking exon 20. The compounds studied as potential treatments include the clinical candidate kinetin, a plant hormone from the cytokinin family. We explored the relationship between the structure of a set of kinetin derivatives (N = 72) and their ability to correct aberrant splicing of the ELP1 gene. Active compounds can be obtained by the substitution of the purine ring with chlorine and fluorine at the C2 atom, with a small alkyl group at the N7 atom, or with diverse groups at the C8 atom. On the other hand, a substitution at the N3 or N9 atoms resulted in a loss of activity. We successfully tested a hypothesis inspired by the remarkable tolerance of the position C8 to substitution, postulating that the imidazole of the purine moiety is not required for the activity. We also evaluated the activity of phytohormones from other families, but none of them corrected ELP1 mRNA aberrant splicing. A panel of in vitro ADME assays, including evaluation of transport across model barriers, stability in plasma and in the presence of liver microsomal fraction as well as plasma protein binding, was used for an initial estimation of the potential bioavailability of the active compounds. Finally, a RNA-seq data suggest that 8-aminokinetin modulates expression spliceosome components.
- MeSH
- kinetin * farmakologie chemie MeSH
- lidé MeSH
- molekulární struktura MeSH
- prekurzory RNA * genetika metabolismus MeSH
- sestřih RNA * účinky léků MeSH
- transkripční elongační faktory metabolismus genetika MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
RNA splicing, the process of intron removal from pre-mRNA, is essential for the regulation of gene expression. It is controlled by the spliceosome, a megadalton RNA-protein complex that assembles de novo on each pre-mRNA intron through an ordered assembly of intermediate complexes1,2. Spliceosome activation is a major control step that requires substantial protein and RNA rearrangements leading to a catalytically active complex1-5. Splicing factor 3B subunit 1 (SF3B1) protein-a subunit of the U2 small nuclear ribonucleoprotein6-is phosphorylated during spliceosome activation7-10, but the kinase that is responsible has not been identified. Here we show that cyclin-dependent kinase 11 (CDK11) associates with SF3B1 and phosphorylates threonine residues at its N terminus during spliceosome activation. The phosphorylation is important for the association between SF3B1 and U5 and U6 snRNAs in the activated spliceosome, termed the Bact complex, and the phosphorylation can be blocked by OTS964, a potent and selective inhibitor of CDK11. Inhibition of CDK11 prevents spliceosomal transition from the precatalytic complex B to the activated complex Bact and leads to widespread intron retention and accumulation of non-functional spliceosomes on pre-mRNAs and chromatin. We demonstrate a central role of CDK11 in spliceosome assembly and splicing regulation and characterize OTS964 as a highly selective CDK11 inhibitor that suppresses spliceosome activation and splicing.
- MeSH
- aktivace enzymů účinky léků MeSH
- chinolony farmakologie MeSH
- chromatin metabolismus MeSH
- cyklin-dependentní kinasy * antagonisté a inhibitory metabolismus MeSH
- fosfoproteiny * chemie metabolismus MeSH
- fosforylace MeSH
- malý jaderný ribonukleoprotein U2 * chemie metabolismus MeSH
- prekurzory RNA * genetika metabolismus MeSH
- sestřih RNA * účinky léků MeSH
- spliceozomy * účinky léků metabolismus MeSH
- threonin metabolismus MeSH
- Publikační typ
- časopisecké články MeSH