Locomotion is an important, fitness-related functional trait. Environment selects for type of locomotion and shapes the morphology of locomotion-related traits such as body size and appendages. In subterranean aquatic arthropods, these traits are subjected to multiple, at times opposing selection pressures. Darkness selects for enhanced mechano- and chemosensory systems and hence elongation of appendages. Conversely, water currents have been shown to favor short appendages. However, no study has addressed the variation in locomotion of invertebrates inhabiting cave streams and cave lakes, or questioned the relationship between species' morphology and locomotion. To fill this knowledge gap, we studied the interplay between habitat use, morphology and locomotion in amphipods of the subterranean genus Niphargus. Previous studies showed that lake and stream species differ in morphology. Namely, lake species are large, stout and long-legged, whereas stream species are small, slender and short-legged. We here compared locomotion mode and speed between three lake and five stream species. In addition, we tested whether morphology predicts locomotion. We found that the stream species lie on their body sides and move using slow crawling or tail-flipping. The species inhabiting lakes move comparably faster, and use a variety of locomotion modes. Noteworthy, one of the lake species almost exclusively moves in an upright or semi-upright position that resembles walking. Body size and relative length of appendages predict locomotion mode and speed in all species. We propose that integrating locomotion in the studies of subterranean species might improve our understanding of their morphological evolution.
- MeSH
- Amphipoda physiology MeSH
- Behavior, Animal MeSH
- Species Specificity MeSH
- Ecosystem * MeSH
- Locomotion * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Groundwater is an extreme environment due to its absence of light, resource scarcity and highly fragmentary nature. Successful groundwater colonizers underwent major evolutionary changes and exhibit eye and pigment loss (troglomorphies). Consequently, their chances of dispersal and survival in the well-connected surface waters are greatly decreased, resulting in significant endemism. The West Palaearctic subterranean amphipod genus Niphargus comprises hundreds of narrowly endemic and troglomorphic species. Nevertheless, a few are known to occur in surface waters, two of which, N. hrabei and N. valachicus, have extremely large ranges that even exceed those of many surface-water amphipods. We tested if this pattern results from a secondary colonization of the relatively well-connected epigean environment, and whether this ecological shift promoted the large-scale dispersal of these species. Results showed that despite their ecological and zoogeographic similarities, N. hrabei and N. valachicus are not closely related and independently colonized surface waters. Their phylogeographic patterns indicate Middle to Late Pleistocene dispersal episodes throughout the Danube lowlands, and relatively modest yet significant genetic differentiation among populations. Clustering based on morphology revealed that the two species are phenotypically closer to each other than they are to most other epigean congeners. We presume that the ecological shift to surface environments was facilitated by their ability to thrive in hypoxic waters where rheophilic competitors from the family Gammaridae cannot survive. In conclusion, our results indicate that adaptation to groundwater is not a one-way evolutionary path and that troglomorphic species can occasionally recolonize and widely disperse in surface waters.
- MeSH
- Amphipoda genetics physiology MeSH
- Bayes Theorem MeSH
- Biological Evolution MeSH
- Species Specificity MeSH
- Phenotype MeSH
- Phylogeny MeSH
- Phylogeography MeSH
- Haplotypes genetics MeSH
- Animal Migration physiology MeSH
- Groundwater * MeSH
- Polymorphism, Genetic MeSH
- Cluster Analysis MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Differences in life histories are commonly exhibited within ecological communities, especially among species that display increased variations in body size and morphology and are phylogenetically distant. To examine the relationship between morphological dissimilarity and life history divergence, we investigated three morphologically distinct and distantly related species of freshwater amphipods that co-occur throughout the Danube lowlands - Gammarus balcanicus dacicus, Niphargus valachicus and Synurella ambulans - by collecting monthly samples during a one-year period. Results revealed that the studied species differ significantly with respect to fecundity, size at maturity, number of generations per year, duration and timing of the reproductive period and egg volume. Despite some overlap, each species possesses a unique combination of traits, supporting the hypothesis that life history variation within freshwater amphipod communities can reflect dissimilarities regarding body size, morphology and evolutionary relationships. However, it is not yet clear which of these factors has the most significant contribution to life history divergence.
- MeSH
- Amphipoda anatomy & histology classification growth & development physiology MeSH
- Phylogeny MeSH
- Reproduction MeSH
- Fresh Water MeSH
- Pregnancy MeSH
- Body Size MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Pregnancy MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Romania MeSH
Inland epigean freshwater amphipods of Romania are diverse and abundant for this region has a favourable geographical position between the Balkans and the Black Sea. Excluding Ponto-Caspian species originating in brackish waters and freshwater subterranean taxa, there are 11 formally recognized epigean freshwater species recorded from this country. They belong to 3 genera, each representing a different family: Gammarus (Gammaridae, 8 species or species complexes), Niphargus (Niphargidae, 2 epigean species) and Synurella (Crangonyctidae, one species). Their large-scale distribution patterns nevertheless remain obscure due to insufficient data, consequently limiting biogeographical interpretations. We provide extensive new data with high resolution distribution maps, thus improving the knowledge of the ranges of these taxa. Gammarus species display substantial altitudinal variability and patchy, fragmented distribution patterns. They occur abundantly, particularly in springs and streams, from lowlands to sub-mountainous and mountainous regions. In the light of recent molecular research, we hypothesize that the complex geomorphological dynamics of the Carpathian region during the Late Tertiary probably contributed to their allopatric distribution pattern. Contrasting with Gammarus, the genera Niphargus and Synurella exhibit low altitudinal variability, broad ecological valences and overlapping distributions, being widespread throughout the lowlands. The current distribution of N. hrabei and N. valachicus seems to be linked to the extent of the Paratethys during the Early Pliocene or Pleistocene. We further discuss the taxonomic validity of two synonymized and one apparently undescribed taxon, and provide an updated pictorial identification key that includes all taxa and forms discussed in our study. The mosaic distribution of epigean freshwater amphipod species in Romania shows that this region is particularly suitable for phylo- and biogeographical analyses of this group.
- MeSH
- Amphipoda physiology MeSH
- Ecosystem MeSH
- Animal Distribution MeSH
- Fresh Water parasitology MeSH
- Body Size MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Romania MeSH