""PharmaBrain" CZ.02.1.01/0.0/0.0/16_025/0007444"
Dotaz
Zobrazit nápovědu
Evidence from clinical and preclinical studies implicates dysfunction of N-methyl-D-aspartate receptors (NMDARs) in schizophrenia progression and symptoms. We investigated the antipsychotic effect of two neuroactive steroids in an animal model of schizophrenia induced by systemic application of MK-801. The neuroactive steroids differ in their mechanism of action at NMDARs. MS-249 is positive, while PA-Glu is a negative allosteric NMDAR modulator. We hypothesized that the positive NMDA receptor modulator would attenuate deficits caused by MK-801 co-application more effectively than PA-Glu. The rats were tested in a battery of tests assessing spontaneous locomotion, anxiety and cognition. Contrary to our expectations, PA-Glu exhibited a superior antipsychotic effect to MS-249. The performance of MS-249-treated rats in cognitive tests differed depending on the level of stress the rats were exposed to during test sessions. In particular, with the increasing severity of stress exposure, the performance of animals worsened. Our results demonstrate that enhancement of NMDAR function may result in unspecific behavioral responses. Positive NMDAR modulation can influence other neurobiological processes besides memory formation, such as anxiety and response to stress.
- MeSH
- antipsychotika farmakologie MeSH
- bicyklické sloučeniny heterocyklické metabolismus MeSH
- chování zvířat účinky léků MeSH
- dizocilpinmaleát farmakologie MeSH
- HEK293 buňky MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- potkani Long-Evans MeSH
- potkani Wistar MeSH
- pregnenolon metabolismus farmakologie MeSH
- receptory N-methyl-D-aspartátu antagonisté a inhibitory metabolismus MeSH
- schizofrenie farmakoterapie metabolismus MeSH
- steroidy farmakologie MeSH
- test vyvýšeného křížového bludiště MeSH
- úleková reakce účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Alzheimer's disease (AD) is a complex disorder with unknown etiology. Currently, only symptomatic therapy of AD is available, comprising cholinesterase inhibitors and N-methyl-d-aspartate (NMDA) receptor antagonists. Drugs targeting only one pathological condition have generated only limited efficacy. Thus, combining two or more therapeutic interventions into one molecule is believed to provide higher benefit for the treatment of AD. In the presented study, we designed, synthesized, and biologically evaluated 15 novel fluoren-9-amine derivatives. The in silico prediction suggested both the oral availability and permeation through the blood-brain barrier (BBB). An initial assessment of the biological profile included determination of the cholinesterase inhibition and NMDA receptor antagonism at the GluN1/GluN2A and GluN1/GluN2B subunits, along with a low cytotoxicity profile in the CHO-K1 cell line. Interestingly, compounds revealed a selective butyrylcholinesterase (BChE) inhibition pattern with antagonistic activity on the NMDARs. Their interaction with butyrylcholinesterase was elucidated by studying enzyme kinetics for compound 3c in tandem with the in silico docking simulation. The docking study showed the interaction of the tricyclic core of new derivatives with Trp82 within the anionic site of the enzyme in a similar way as the template drug tacrine. From the kinetic analysis, it is apparent that 3c is a competitive inhibitor of BChE.
- MeSH
- Alzheimerova nemoc farmakoterapie enzymologie genetika patologie MeSH
- butyrylcholinesterasa chemie účinky léků genetika MeSH
- CHO buňky MeSH
- cholinesterasové inhibitory chemie farmakologie MeSH
- Cricetulus MeSH
- fluoreny chemie farmakologie MeSH
- hematoencefalická bariéra účinky léků MeSH
- inhibitory enzymů farmakologie MeSH
- lidé MeSH
- počítačová simulace MeSH
- receptory N-methyl-D-aspartátu antagonisté a inhibitory genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH