"Ref.3.3-CZE-1192673-HFST-P" Dotaz Zobrazit nápovědu
Induction of plant defences can show various levels of localization, which can optimize their efficiency. Locally induced responses may be particularly important in large plants, such as trees, that show high variability in traits and herbivory rates across their canopies. We studied the branch-localized induction of polyphenols, volatiles (VOCs), and changes in leaf protein content in Carpinus betulus L., Quercus robur L., and Tilia cordata L. in a common garden experiment. To induce the trees, we treated ten individuals per species on one branch with methyl jasmonate. Five other individuals per species served as controls. We measured the traits in the treated branches, in control branches on treated trees, and in control trees. Additionally, we ran predation assays and caterpillar food-choice trials to assess the effects of our treatment on other trophic levels. Induced VOCs included mainly mono- and sesquiterpenes. Their production was strongly localized to the treated branches in all three tree species studied. Treated trees showed more predation events than control trees. The polyphenol levels and total protein content showed a limited response to the treatment. Yet, winter moth caterpillars preferred leaves from control branches over leaves from treated branches within C. betulus individuals and leaves from control Q. robur individuals over leaves from treated Q. robur individuals. Our results suggest that there is a significant level of localization in induction of VOCs and probably also in unknown traits with direct effects on herbivores. Such localization allows trees to upregulate defences wherever and whenever they are needed.
- MeSH
- analýza hlavních komponent MeSH
- bukotvaré chemie metabolismus MeSH
- býložravci * MeSH
- hmyz MeSH
- obranné mechanismy proti býložravcům * MeSH
- stromy chemie metabolismus MeSH
- těkavé organické sloučeniny analýza metabolismus MeSH
- Tilia chemie metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
In arthropod community ecology, species richness studies tend to be prioritised over those investigating patterns of abundance. Consequently, the biotic and abiotic drivers of arboreal arthropod abundance are still relatively poorly known. In this cross-continental study, we employ a theoretical framework in order to examine patterns of covariance among herbivorous and predatory arthropod guilds. Leaf-chewing and leaf-mining herbivores, and predatory ants and spiders, were censused on > 1000 trees in nine 0.1 ha forest plots. After controlling for tree size and season, we found no negative pairwise correlations between guild abundances per plot, suggestive of weak signals of both inter-guild competition and top-down regulation of herbivores by predators. Inter-guild interaction strengths did not vary with mean annual temperature, thus opposing the hypothesis that biotic interactions intensify towards the equator. We find evidence for the bottom-up limitation of arthropod abundances via resources and abiotic factors, rather than for competition and predation.
Elevational gradients affect the production of plant secondary metabolites through changes in both biotic and abiotic conditions. Previous studies have suggested both elevational increases and decreases in host-plant chemical defences. We analysed the correlation of alkaloids and polyphenols with elevation in a community of nine Ficus species along a continuously forested elevational gradient in Papua New Guinea. We sampled 204 insect species feeding on the leaves of these hosts and correlated their community structure to the focal compounds. Additionally, we explored species richness of folivorous mammals along the gradient. When we accounted for Ficus species identity, we found a general elevational increase in flavonoids and alkaloids. Elevational trends in non-flavonol polyphenols were less pronounced or showed non-linear correlations with elevation. Polyphenols responded more strongly to changes in temperature and humidity than alkaloids. The abundance of insect herbivores decreased with elevation, while the species richness of folivorous mammals showed an elevational increase. Insect community structure was affected mainly by alkaloid concentration and diversity. Although our results show an elevational increase in several groups of metabolites, the drivers behind these trends likely differ. Flavonoids may provide figs with protection against abiotic stressors. In contrast, alkaloids affect insect herbivores and may provide protection against mammalian herbivores and pathogens. Concurrent analysis of multiple compound groups alongside ecological data is an important approach for understanding the selective landscape that shapes plant defences.
- MeSH
- alkaloidy metabolismus MeSH
- býložravci * MeSH
- feromony analýza MeSH
- Ficus chemie MeSH
- flavonoidy metabolismus MeSH
- hmyz fyziologie MeSH
- listy rostlin chemie MeSH
- nadmořská výška * MeSH
- potravní řetězec * MeSH
- savci fyziologie MeSH
- společenstvo MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Papua Nová Guinea MeSH