Cellular growth
Dotaz
Zobrazit nápovědu
Penile squamous cell carcinoma (pSCC) represents an uncommon malignancy characterized by stagnant mortality, psychosexual distress, and a highly variable prognosis. Currently, the World Health Organization distinguishes between human papillomavirus (HPV)-related and HPV-independent pSCC. Recently, there has been an evolving line of research documenting the enrichment of HPV-independent pSCC with a high tumor mutational burden (TMB) and programmed death ligand-1 expression, as well as clusters of genes associated with HPV status. In this study, we conducted comprehensive next-generation sequencing DNA profiling of 146 pSCC samples using a panel consisting of 355 genes associated with tumors. This profiling was correlated with immunohistochemical markers and prognostic clinical data. A survival analysis of recurrent genomic events (found in ≥10 cases) was performed. TP53, CDKN2A, ATM, EPHA7, POT1, CHEK1, GRIN2A, and EGFR alterations were associated with significantly shortened overall survival in univariate and multivariate analysis. HPV positivity, diagnosed through both p16 immunohistochemistry and HPV DNA analysis, displayed no impact on survival but was associated with high-grade, lymphatic invasion, programmed death ligand-1 negativity/weak expression, and low TMB. FAT1, TP53, CDKN2A, CASP8, and HRAS were more often mutated in HPV-independent pSCC. In contrast, HPV-associated pSCCs were enriched by EPHA7, ATM, GRIN2A, and CHEK1 mutations. PIK3CA, FAT1, FBXW7, and KMT2D mutations were associated with high TMB. NOTCH1, TP53, CDKN2A, POT1, KMT2D, ATM, CHEK1, EPHA3, and EGFR alterations were related to adverse clinicopathologic signs, such as advanced stage, high tumor budding, and lymphovascular invasion. We detected 160 alterations with potential treatment implications, with 21.2% of samples showing alterations in the homologous recombination repair pathway. To the best of our knowledge, this study describes the largest cohort of pSCC with complex molecular pathologic, clinical, and prognostic analysis correlating with prognosis.
- MeSH
- ATM protein genetika MeSH
- dospělí MeSH
- erbB receptory genetika MeSH
- infekce papilomavirem MeSH
- inhibitor p16 cyklin-dependentní kinasy genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- mutace MeSH
- nádorové biomarkery * genetika analýza MeSH
- nádorový supresorový protein p53 genetika MeSH
- nádory penisu * genetika mortalita patologie virologie MeSH
- prognóza MeSH
- proteiny vázající telomery MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- shelterinový komplex MeSH
- spinocelulární karcinom * genetika mortalita patologie virologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
The extracellular matrix (ECM)-and its mechanobiology-regulates key cellular functions that drive tumor growth and development. Accordingly, mechanotherapy is emerging as an effective approach to treat fibrotic diseases such as cancer. Through restoring the ECM to healthy-like conditions, this treatment aims to improve tissue perfusion, facilitating the delivery of chemotherapies. In particular, the manipulation of ECM is gaining interest as a valuable strategy for developing innovative treatments based on nanoparticles (NPs). However, further progress is required; for instance, it is known that the presence of a dense ECM, which hampers the penetration of NPs, primarily impacts the efficacy of nanomedicines. Furthermore, most 2D in vitro studies fail to recapitulate the physiological deposition of matrix components. To address these issues, a comprehensive understanding of the interactions between the ECM and NPs is needed. This review focuses on the main features of the ECM and its complex interplay with NPs. Recent advances in mechanotherapy are discussed and insights are offered into how its combination with nanomedicine can help improve nanomaterials design and advance their clinical translation.
- MeSH
- extracelulární matrix * metabolismus MeSH
- lidé MeSH
- nádory * terapie MeSH
- nanočástice * chemie MeSH
- nanomedicína * metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The glycoprotein clusterin (CLU) is involved in cell proliferation and DNA damage repair and is highly expressed in tumor cells. Here, we aimed to investigate the effects of CLU dysregulation on two human astrocytic cell lines: CCF-STTG1 astrocytoma cells and SV-40 immortalized normal human astrocytes. We observed that suppression of CLU expression by RNA interference inhibited cell proliferation, triggered the DNA damage response, and resulted in cellular senescence in both cell types tested. To further investigate the underlying mechanism behind these changes, we measured reactive oxygen species, assessed mitochondrial function, and determined selected markers of the senescence-associated secretory phenotype. Our results suggest that CLU deficiency triggers oxidative stress-mediated cellular senescence associated with pronounced alterations in mitochondrial membrane potential, mitochondrial mass, and expression levels of OXPHOS complex I, II, III and IV, indicating mitochondrial dysfunction. This report shows the important role of CLU in cell cycle maintenance in astrocytes. Based on these data, targeting CLU may serve as a potential therapeutic approach valuable for treating gliomas.
- MeSH
- astrocyty * metabolismus patologie MeSH
- klusterin * metabolismus genetika MeSH
- lidé MeSH
- membránový potenciál mitochondrií * fyziologie MeSH
- mitochondrie * metabolismus MeSH
- nádorové buněčné linie MeSH
- oxidační stres fyziologie MeSH
- oxidativní fosforylace MeSH
- poškození DNA MeSH
- proliferace buněk * MeSH
- reaktivní formy kyslíku metabolismus MeSH
- stárnutí buněk * fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Impaired fibroblast growth factor receptor (FGFR) signaling is associated with many human conditions, including growth disorders, degenerative diseases, and cancer. Current FGFR therapeutics are based on chemical inhibitors of FGFR tyrosine kinase activity (TKIs). However, FGFR TKIs are limited in their target specificity as they generally inhibit all FGFRs and other receptor tyrosine kinases. In the search for specific inhibitors of human FGFR1, we identified VZ23, a DNA aptamer that binds to FGFR1b and FGFR1c with a KD of 55 nM and 162 nM, respectively, but not to the other FGFR variants (FGFR2b, FGFR2c, FGFR3b, FGFR3c, FGFR4). In cells, VZ23 inhibited the activation of downstream FGFR1 signaling and FGFR1-mediated regulation of cellular senescence, proliferation, and extracellular matrix homeostasis. Consistent with the specificity toward FGFR1 observed in vitro, VZ23 did not inhibit FGFR2-4 signaling in cells. We show that the VZ23 inhibits FGFR1 signaling in the presence of cognate fibroblast growth factor (FGF) ligands and its inhibitory activity is linked to its capacity to form unusual G-quadruplex structure. Our data suggest that targeting FGFR1 with DNA aptamers could be an effective alternative to TKIs for treating impaired FGFR1 signaling in human craniosynostoses.
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Cell cycle progression and leukemia development are tightly regulated processes in which even a small imbalance in the expression of cell cycle regulatory molecules and microRNAs (miRNAs) can lead to an increased risk of cancer/leukemia development. Here, we focus on the study of a ubiquitous, multifunctional, and oncogenic miRNA-hsa-miR-155-5p (miR-155, MIR155HG), which is overexpressed in malignancies including chronic lymphocytic leukemia (CLL). Nonetheless, the precise mechanism of how miR-155 regulates the cell cycle in leukemic cells remains the subject of extensive research. METHODS: We edited the CLL cell line MEC-1 by CRISPR/Cas9 to introduce a short deletion within the MIR155HG gene. To describe changes at the transcriptome and miRNome level in miR-155-deficient cells, we performed mRNA-seq/miRNA-seq and validated changes by qRT-PCR. Flow cytometry was used to measure cell cycle kinetics. A WST-1 assay, hemocytometer, and Annexin V/PI staining assessed cell viability and proliferation. RESULTS: The limited but phenotypically robust miR-155 modification impaired cell proliferation, cell cycle, and cell ploidy. This was accompanied by overexpression of the negative cell cycle regulator p21/CDKN1A and Cyclin D1 (CCND1). We confirmed the overexpression of canonical miR-155 targets such as PU.1, FOS, SHIP-1, TP53INP1 and revealed new potential targets (FCRL5, ISG15, and MX1). CONCLUSIONS: We demonstrate that miR-155 deficiency impairs cell proliferation, cell cycle, transcriptome, and miRNome via deregulation of the MIR155HG/TP53INP1/CDKN1A/CCND1 axis. Our CLL model is valuable for further studies to manipulate miRNA levels to revert highly aggressive leukemic cells to nearly benign or non-leukemic types.
- MeSH
- chronická lymfatická leukemie * genetika patologie MeSH
- cyklin D1 genetika metabolismus MeSH
- inhibitor p21 cyklin-dependentní kinasy * genetika metabolismus MeSH
- kontrolní body buněčného cyklu * genetika MeSH
- lidé MeSH
- mikro RNA * genetika metabolismus MeSH
- nádorové buněčné linie MeSH
- proliferace buněk genetika MeSH
- proteiny teplotního šoku MeSH
- regulace genové exprese u leukemie MeSH
- transportní proteiny genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Heavy metals are naturally occurring components of the Earth's crust and persistent environmental pollutants. Human exposure to heavy metals occurs via various pathways, including inhalation of air/dust particles, ingesting contaminated water or soil, or through the food chain. Their bioaccumulation may lead to diverse toxic effects affecting different body tissues and organ systems. The toxicity of heavy metals depends on the properties of the given metal, dose, route, duration of exposure (acute or chronic), and extent of bioaccumulation. The detrimental impacts of heavy metals on human health are largely linked to their capacity to interfere with antioxidant defense mechanisms, primarily through their interaction with intracellular glutathione (GSH) or sulfhydryl groups (R-SH) of antioxidant enzymes such as superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), glutathione reductase (GR), and other enzyme systems. Although arsenic (As) is believed to bind directly to critical thiols, alternative hydrogen peroxide production processes have also been postulated. Heavy metals are known to interfere with signaling pathways and affect a variety of cellular processes, including cell growth, proliferation, survival, metabolism, and apoptosis. For example, cadmium can affect the BLC-2 family of proteins involved in mitochondrial death via the overexpression of antiapoptotic Bcl-2 and the suppression of proapoptotic (BAX, BAK) mechanisms, thus increasing the resistance of various cells to undergo malignant transformation. Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important regulator of antioxidant enzymes, the level of oxidative stress, and cellular resistance to oxidants and has been shown to act as a double-edged sword in response to arsenic-induced oxidative stress. Another mechanism of significant health threats and heavy metal (e.g., Pb) toxicity involves the substitution of essential metals (e.g., calcium (Ca), copper (Cu), and iron (Fe)) with structurally similar heavy metals (e.g., cadmium (Cd) and lead (Pb)) in the metal-binding sites of proteins. Displaced essential redox metals (copper, iron, manganese) from their natural metal-binding sites can catalyze the decomposition of hydrogen peroxide via the Fenton reaction and generate damaging ROS such as hydroxyl radicals, causing damage to lipids, proteins, and DNA. Conversely, some heavy metals, such as cadmium, can suppress the synthesis of nitric oxide radical (NO·), manifested by altered vasorelaxation and, consequently, blood pressure regulation. Pb-induced oxidative stress has been shown to be indirectly responsible for the depletion of nitric oxide due to its interaction with superoxide radical (O2·-), resulting in the formation of a potent biological oxidant, peroxynitrite (ONOO-). This review comprehensively discusses the mechanisms of heavy metal toxicity and their health effects. Aluminum (Al), cadmium (Cd), arsenic (As), mercury (Hg), lead (Pb), and chromium (Cr) and their roles in the development of gastrointestinal, pulmonary, kidney, reproductive, neurodegenerative (Alzheimer's and Parkinson's diseases), cardiovascular, and cancer (e.g. renal, lung, skin, stomach) diseases are discussed. A short account is devoted to the detoxification of heavy metals by chelation via the use of ethylenediaminetetraacetic acid (EDTA), dimercaprol (BAL), 2,3-dimercaptosuccinic acid (DMSA), 2,3-dimercapto-1-propane sulfonic acid (DMPS), and penicillamine chelators.
- MeSH
- antioxidancia metabolismus MeSH
- bioakumulace MeSH
- látky znečišťující životní prostředí toxicita MeSH
- lidé MeSH
- oxidační stres * účinky léků MeSH
- těžké kovy * toxicita MeSH
- vystavení vlivu životního prostředí škodlivé účinky MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
During development, tooth germs undergo various morphological changes resulting from interactions between the oral epithelium and ectomesenchyme. These processes are influenced by the extracellular matrix, the composition of which, along with cell adhesion and signaling, is regulated by metalloproteinases. Notably, these include matrix metalloproteinases (MMPs), a disintegrin and metalloproteinases (ADAMs), and a disintegrin and metalloproteinases with thrombospondin motifs (ADAMTSs). Our analysis of previously published scRNAseq datasets highlight that these metalloproteinases show dynamic expression patterns during tooth development, with expression in a wide range of cell types, suggesting multiple roles in tooth morphogenesis. To investigate this, Marimastat, a broad-spectrum inhibitor of MMPs, ADAMs, and ADAMTSs, was applied to ex vivo cultures of mouse molar tooth germs. The treated samples exhibited significant changes in tooth germ size and morphology, including an overall reduction in size and an inversion of the typical bell shape. The cervical loop failed to extend, and the central area of the inner enamel epithelium protruded. Marimastat treatment also disrupted proliferation, cell polarization, and organization compared with control tooth germs. In addition, a decrease in laminin expression was observed, leading to a disruption in continuity of the basement membrane at the epithelial-mesenchymal junction. Elevated hypoxia-inducible factor 1-alpha gene (Hif-1α) expression correlated with a disruption to blood vessel development around the tooth germs. These results reveal the crucial role of metalloproteinases in tooth growth, shape, cervical loop elongation, and the regulation of blood vessel formation during prenatal tooth development.NEW & NOTEWORTHY Inhibition of metalloproteinases during tooth development had a wide-ranging impact on molar growth affecting proliferation, cell migration, and vascularization, highlighting the diverse role of these proteins in controlling development.
- MeSH
- faktor 1 indukovatelný hypoxií - podjednotka alfa metabolismus genetika MeSH
- inhibitory matrixových metaloproteinas farmakologie MeSH
- kyseliny hydroxamové farmakologie MeSH
- metaloproteasy metabolismus genetika MeSH
- moláry embryologie růst a vývoj metabolismus enzymologie MeSH
- morfogeneze MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- odontogeneze * MeSH
- proliferace buněk * MeSH
- vývojová regulace genové exprese MeSH
- zubní zárodek embryologie metabolismus enzymologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with patients having unresectable or metastatic disease at diagnosis, with poor prognosis and very short survival. Given that genetic variation within autophagy-related genes influences autophagic flux and susceptibility to solid cancers, we decided to investigate whether 55,583 single nucleotide polymorphisms (SNPs) within 234 autophagy-related genes could influence the risk of developing PDAC in three large independent cohorts of European ancestry including 12,754 PDAC cases and 324,926 controls. The meta-analysis of these populations identified, for the first time, the association of the BIDrs9604789 variant with an increased risk of developing the disease (ORMeta = 1.31, p = 9.67 × 10-6). We also confirmed the association of TP63rs1515496 and TP63rs35389543 variants with PDAC risk (OR = 0.89, p = 6.27 × 10-8 and OR = 1.16, p = 2.74 × 10-5). Although it is known that BID induces autophagy and TP63 promotes cell growth, cell motility and invasion, we also found that carriers of the TP63rs1515496G allele had increased numbers of FOXP3+ Helios+ T regulatory cells and CD45RA+ T regulatory cells (p = 7.67 × 10-4 and p = 1.56 × 10-3), but also decreased levels of CD4+ T regulatory cells (p = 7.86 × 10-4). These results were in agreement with research suggesting that the TP63rs1515496 variant alters binding sites for FOXA1 and CTCF, which are transcription factors involved in modulating specific subsets of regulatory T cells. In conclusion, this study identifies BID as new susceptibility locus for PDAC and confirms previous studies suggesting that the TP63 gene is involved in the development of PDAC. This study also suggests new pathogenic mechanisms of the TP63 locus in PDAC.
- MeSH
- autofagie * genetika MeSH
- běloši genetika MeSH
- duktální karcinom slinivky břišní * genetika patologie MeSH
- forkhead transkripční faktory MeSH
- genetická predispozice k nemoci * MeSH
- hepatocytární jaderný faktor 3-alfa genetika metabolismus MeSH
- jednonukleotidový polymorfismus * MeSH
- kohortové studie MeSH
- lidé MeSH
- nádorové biomarkery * genetika MeSH
- nádorové supresorové proteiny * genetika MeSH
- nádory slinivky břišní * genetika patologie MeSH
- studie případů a kontrol MeSH
- transkripční faktory genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
A new group of potent histone deacetylase inhibitors (HDACis) capable of inhibiting cell growth and affecting cell-cycle progression in Tohoku Hospital Pediatrics-1 (THP-1) monocytic leukaemia cells was synthesized. The inhibitors belong to a series of hydroxamic acid derivatives. We designed and synthesized a series of 22 N-hydroxycinnamamide derivatives, out of which 20 are new compounds. These compounds contain various substituted anilides as the surface recognition moiety (SRM), a p-hydroxycinnamate linker, and hydroxamic acids as the zinc-binding group (ZBG). The whole series of synthesized hydroxamic acids inhibited THP-1 cell proliferation. Compounds 7d and 7p, which belong to the category of derivatives with the most potent antiproliferative properties, exert a similar effect on cell-cycle progression as vorinostat and induce apoptosis in THP-1 cells. Furthermore, compounds 7d and 7p were demonstrated to inhibit HDAC class I and II in THP-1 cells with comparable potency to vorinostat and increase acetylation of histones H2a, H2b, H3, and H4. Molecular modelling was used to predict the probable binding mode of the studied HDACis in class I and II histone deacetylases in terms of Zn2+ ion chelation by the hydroxamate group.
- MeSH
- apoptóza * účinky léků MeSH
- buněčný cyklus účinky léků MeSH
- histondeacetylasy metabolismus MeSH
- inhibitory histondeacetylas * farmakologie chemická syntéza chemie MeSH
- kyseliny hydroxamové * farmakologie chemická syntéza chemie MeSH
- kyseliny kumarové * farmakologie chemie chemická syntéza MeSH
- lidé MeSH
- molekulární struktura MeSH
- nádorové buněčné linie MeSH
- proliferace buněk účinky léků MeSH
- protinádorové látky * farmakologie chemická syntéza chemie MeSH
- screeningové testy protinádorových léčiv MeSH
- simulace molekulového dockingu MeSH
- THP-1 buňky MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Current antibiotics and chemotherapeutics are becoming ineffective because pathogenic bacteria and tumor cells have developed multiple drug resistance. Therefore, it is necessary to find new substances that can be used in treatment, either alone or as sensitizing molecules in combination with existing drugs. Peptaibols are bioactive, membrane-active peptides of non-ribosomal origin, mainly produced by filamentous fungi such as Trichoderma spp. This study focused on producing peptaibol-rich extracts from Trichoderma atroviride O1, cultivated on malt extract agar (MA) under circadian and constant darkness conditions for 13 days. Peptaibol production was detected by MALDI-TOF mass spectrometry after six days of cultivation. The extracts demonstrated antibacterial activity against Staphylococcus aureus strains, particularly the methicillin-resistant variant, but not against the Gram-negative Pseudomonas aeruginosa. Quorum sensing interference revealed that a peptaibol-rich extract suppressed Vibrio campbellii BAA-1119's AI-2 signaling system to a degree comparable with gentamycin. Beyond antibacterial properties, the extracts exhibited notable antiproliferative activity against human ovarian cancer cells and their adriamycin-resistant subline in both 2D and 3D models. Specifically, MA-derived extracts reduced ovarian cancer cell viability by 70% at 50 μg/mL, especially under light/dark regime of cultivation. Compared to previously published results for PDA-based extracts, MA cultivation shifted the biological effects of peptaibol-containing extracts toward anticancer potential. These findings support the idea that modifying fungal cultivation parameters, the bioactivity of secondary metabolite mixtures can be tailored for specific therapeutic applications.
- MeSH
- agar * chemie MeSH
- antibakteriální látky * farmakologie metabolismus MeSH
- Hypocreales MeSH
- kultivační média chemie MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- nádorové buněčné linie MeSH
- peptaiboly * farmakologie metabolismus biosyntéza chemie MeSH
- proliferace buněk účinky léků MeSH
- protinádorové látky * farmakologie metabolismus MeSH
- Pseudomonas aeruginosa účinky léků MeSH
- Staphylococcus aureus účinky léků MeSH
- Trichoderma * metabolismus růst a vývoj chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH