FLASH electron radiotherapy Dotaz Zobrazit nápovědu
Objective.This work presents a method for enhanced detection, imaging, and measurement of the thermal neutron flux.Approach. Measurements were performed in a water tank, while the detector is positioned out-of-field of a 20 MeV ultra-high pulse dose rate electron beam. A semiconductor pixel detector Timepix3 with a silicon sensor partially covered by a6LiF neutron converter was used to measure the flux, spatial, and time characteristics of the neutron field. To provide absolute measurements of thermal neutron flux, the detection efficiency calibration of the detectors was performed in a reference thermal neutron field. Neutron signals are recognized and discriminated against other particles such as gamma rays and x-rays. This is achieved by the resolving power of the pixel detector using machine learning algorithms and high-resolution pattern recognition analysis of the high-energy tracks created by thermal neutron interactions in the converter.Main results. The resulting thermal neutrons equivalent dose was obtained using conversion factor (2.13(10) pSv·cm2) from thermal neutron fluence to thermal neutron equivalent dose obtained by Monte Carlo simulations. The calibrated detectors were used to characterize scattered radiation created by electron beams. The results at 12.0 cm depth in the beam axis inside of the water for a delivered dose per pulse of 1.85 Gy (pulse length of 2.4μs) at the reference depth, showed a contribution of flux of 4.07(8) × 103particles·cm-2·s-1and equivalent dose of 1.73(3) nSv per pulse, which is lower by ∼9 orders of magnitude than the delivered dose.Significance. The presented methodology for in-water measurements and identification of characteristic thermal neutrons tracks serves for the selective quantification of equivalent dose made by thermal neutrons in out-of-field particle therapy.
- MeSH
- algoritmy * MeSH
- elektrony * MeSH
- kalibrace MeSH
- neutrony MeSH
- záření gama MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
UHDpulse - Metrology for advanced radiotherapy using particle beams with ultra-high pulse dose rates is a recently started European Joint Research Project with the aim to develop and improve dosimetry standards for FLASH radiotherapy, very high energy electron (VHEE) radiotherapy and laser-driven medical accelerators. This paper gives a short overview about the current state of developments of radiotherapy with FLASH electrons and protons, very high energy electrons as well as laser-driven particles and the related challenges in dosimetry due to the ultra-high dose rate during the short radiation pulses. We summarize the objectives and plans of the UHDpulse project and present the 16 participating partners.