Cistus ladanifer scrublands, traditionally considered as unproductive, have nonetheless been observed to produce large quantities of king bolete (Boletus edulis) fruitbodies. These pyrophytic scrublands are prone to wildfires, which severely affect fungi, hence the need for fire prevention in producing C. ladanifer scrublands. In addition, B. edulis productions have severely decreased in the last years. A deeper understanding of the B. edulis life cycle and of biotic and abiotic factors influencing sporocarp formation is needed to implement management practices that facilitate B. edulis production. For example, some bacteria likely are involved in sporocarp production, representing a key part in the triple symbiosis (plant-fungus-bacteria). In this study, we used soil DNA metabarcoding in C. ladanifer scrublands to (i) assess the effect of site history and fire prevention treatment on bacterial richness and community composition; (ii) test if there was any correlation between various taxonomic groups of bacteria and mycelial biomass and sporocarp production of B. edulis; and to (iii) identify indicator bacteria associated with the most productive B. edulis sites. Our results show that site history drives bacterial richness and community composition, while fire prevention treatments have a weaker, but still detectable effect, particularly in the senescent plots. Sporocarp production correlated positively with genera in Verrucomicrobia. Several genera, e.g. Azospirillum and Gemmatimonas, were identified as indicators of the most productive sites, suggesting a potential biological role in B. edulis fructification. This study provides a better understanding of the triple symbiosis (plant-fungus-bacteria) involved in C. ladanifer-B. edulis systems.
- MeSH
- Bacteria classification genetics MeSH
- Basidiomycota growth & development MeSH
- Cistus growth & development microbiology MeSH
- Metagenomics MeSH
- Microbial Interactions MeSH
- Microbiota * MeSH
- Wildfires prevention & control MeSH
- Soil Microbiology * MeSH
- DNA Barcoding, Taxonomic MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The cultivation and fructification of 15 saprotrophic and wood-rotting fungal strains were tested on three various semi-natural medium. The formation of fruit bodies was observed for Panellus stipticus, Psilocybe cubensis, Schizophyllum commune and Stropharia rugosoannulata in the frame of 1-2 months. Mercury translocation from the substrate to the fruit bodies was then followed in oat flakes medium. Translocation was followed for treatments of 0, 1.25, 2.5, 5, 10 and 20ppm Hg in the substrate. All four fungi formed fruit bodies in almost all replicates. The fruit body yield varied from 0.5 to 15.3g dry weight. The highest bioconcentration factor (BCF) of 2.99 was found for P. cubensis at 1.25ppm Hg. The BCF decreased with increasing Hg concentration in the substrate: 2.49, 0, 2.38, 1.71 and 1.82 for P. stipticus; 3.00, 2.78, 2.48, 1.81 and 2.15 for P. cubensis; 2.47, 1.81, 1.78, 1.07 and 0.96 for S. commune; and 1.96, 1.84, 1.21, 1.71 and 0.96 for S. rugosoannulata. The Hg contents in the fruit bodies reflected the Hg contents in the substrate; the highest contents in the fruit bodies were found in P. cubensis (43.08±7.36ppm Hg) and P. stipticus (36.42±3.39ppm).
- MeSH
- Agaricales chemistry classification MeSH
- Culture Media chemistry MeSH
- Avena chemistry MeSH
- Fruiting Bodies, Fungal chemistry MeSH
- Psilocybe chemistry classification MeSH
- Mercury analysis MeSH
- Schizophyllum chemistry classification MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH