Legume Dotaz Zobrazit nápovědu
Legumes have played an important part in cropping systems since the dawn of agriculture, both as human food and as animal feed. The legume family is arguably one of the most abundantly domesticated crop plant families. Their ability to symbiotically fix nitrogen and improve soil fertility has been rewarded since antiquity and makes them a key protein source. The pea was the original model organism used in Mendel's discovery of the laws of inheritance, making it the foundation of modern plant genetics. This Special Issue provides up-to-date information on legume biology, genetic advances, and the legacy of Mendel.
- MeSH
- dědičnost MeSH
- dějiny 19. století MeSH
- dějiny starověku MeSH
- dějiny středověku MeSH
- Fabaceae genetika metabolismus MeSH
- fenotyp MeSH
- fixace dusíku genetika fyziologie MeSH
- genetická variace MeSH
- genomika * MeSH
- lidé MeSH
- modely genetické MeSH
- zemědělské plodiny genetika dějiny metabolismus MeSH
- Check Tag
- dějiny 19. století MeSH
- dějiny starověku MeSH
- dějiny středověku MeSH
- lidé MeSH
- Publikační typ
- historické články MeSH
- úvodní články MeSH
- úvodníky MeSH
We report the first annotated chromosome-level reference genome assembly for pea, Gregor Mendel's original genetic model. Phylogenetics and paleogenomics show genomic rearrangements across legumes and suggest a major role for repetitive elements in pea genome evolution. Compared to other sequenced Leguminosae genomes, the pea genome shows intense gene dynamics, most likely associated with genome size expansion when the Fabeae diverged from its sister tribes. During Pisum evolution, translocation and transposition differentially occurred across lineages. This reference sequence will accelerate our understanding of the molecular basis of agronomically important traits and support crop improvement.
- MeSH
- chromozomy rostlin genetika MeSH
- Fabaceae klasifikace genetika MeSH
- fenotyp MeSH
- fylogeneze MeSH
- genetická variace MeSH
- genom rostlinný * MeSH
- genomika MeSH
- hrách setý genetika MeSH
- lokus kvantitativního znaku * MeSH
- mapování chromozomů MeSH
- molekulární evoluce * MeSH
- referenční standardy MeSH
- regulace genové exprese u rostlin MeSH
- repetitivní sekvence nukleových kyselin MeSH
- rostlinné proteiny genetika MeSH
- sekvenování celého genomu MeSH
- zásobní proteiny semen genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Satellite repeats are major sequence constituents of centromeres in many plant and animal species. Within a species, a single family of satellite sequences typically occupies centromeres of all chromosomes and is absent from other parts of the genome. Due to their common origin, sequence similarities exist among the centromere-specific satellites in related species. Here, we report a remarkably different pattern of centromere evolution in the plant tribe Fabeae, which includes genera Pisum, Lathyrus, Vicia, and Lens. By immunoprecipitation of centromeric chromatin with CENH3 antibodies, we identified and characterized a large and diverse set of 64 families of centromeric satellites in 14 species. These families differed in their nucleotide sequence, monomer length (33-2,979 bp), and abundance in individual species. Most families were species-specific, and most species possessed multiple (2-12) satellites in their centromeres. Some of the repeats that were shared by several species exhibited promiscuous patterns of centromere association, being located within CENH3 chromatin in some species, but apart from the centromeres in others. Moreover, FISH experiments revealed that the same family could assume centromeric and noncentromeric positions even within a single species. Taken together, these findings suggest that Fabeae centromeres are not shaped by the coevolution of a single centromeric satellite with its interacting CENH3 proteins, as proposed by the centromere drive model. This conclusion is also supported by the absence of pervasive adaptive evolution of CENH3 sequences retrieved from Fabeae species.
The differential accumulation and elimination of repetitive DNA are key drivers of genome size variation in flowering plants, yet there have been few studies which have analysed how different types of repeats in related species contribute to genome size evolution within a phylogenetic context. This question is addressed here by conducting large-scale comparative analysis of repeats in 23 species from four genera of the monophyletic legume tribe Fabeae, representing a 7.6-fold variation in genome size. Phylogenetic analysis and genome size reconstruction revealed that this diversity arose from genome size expansions and contractions in different lineages during the evolution of Fabeae. Employing a combination of low-pass genome sequencing with novel bioinformatic approaches resulted in identification and quantification of repeats making up 55-83% of the investigated genomes. In turn, this enabled an analysis of how each major repeat type contributed to the genome size variation encountered. Differential accumulation of repetitive DNA was found to account for 85% of the genome size differences between the species, and most (57%) of this variation was found to be driven by a single lineage of Ty3/gypsy LTR-retrotransposons, the Ogre elements. Although the amounts of several other lineages of LTR-retrotransposons and the total amount of satellite DNA were also positively correlated with genome size, their contributions to genome size variation were much smaller (up to 6%). Repeat analysis within a phylogenetic framework also revealed profound differences in the extent of sequence conservation between different repeat types across Fabeae. In addition to these findings, the study has provided a proof of concept for the approach combining recent developments in sequencing and bioinformatics to perform comparative analyses of repetitive DNAs in a large number of non-model species without the need to assemble their genomes.
- MeSH
- délka genomu * MeSH
- Fabaceae klasifikace genetika MeSH
- fylogeneze MeSH
- genetická variace * MeSH
- genom rostlinný * MeSH
- genomika * metody MeSH
- koncové repetice MeSH
- molekulární evoluce MeSH
- repetitivní sekvence nukleových kyselin * MeSH
- reprodukovatelnost výsledků MeSH
- sekvenční analýza DNA MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH