Methoxphenidine
Dotaz
Zobrazit nápovědu
The black market for new psychoactive substances has been constantly evolving and the substances that appear on this market cause a considerable number of issues, in extreme cases leading to human deaths. While monitoring the drug black market, we detected a sample of a dissociative anesthetic methoxphenidine, the salt of which contained an unusual anion in the form of bromo- and chloro-zincate complex. Concerning the unknown and potentially hazardous properties of this sample, we performed an in vitro cytotoxicity screening in cell lines of various origins (e.g., kidney, liver, bladder) which was compared with the toxicity results of the methoxphenidine standard prepared for this purpose. The street methoxphenidine sample exhibited markedly higher toxicity than the standard, which was probably caused by the anion impurity. Since it is not usual to analyze anions in salts of novel psychoactive substances, but such samples may be commonly available at the drug black market, we have developed a method for their identification with X-ray powder diffraction (XRPD), which also enabled us to distinguish between different polymorphs/solvates of methoxphenidine that were crystallized in the laboratory. XRPD offers additional data about samples, which may not be discovered by routine techniques, and in some cases, they may help to find out essential information.
Methoxphenidine (MXP) is classified as a new psychoactive substance that has recently emerged on the illicit drug market. Understanding the pharmacological and behavioural profiles of newly emerging drugs is essential for a better understanding of their psychotropic effects and potential toxicity. Therefore, in this study, we investigated a broad range of effects of acute MXP administration: pharmacokinetics in the brain and serum; behaviour (open field and prepulse inhibition), systemic toxicity (lethal dose; LD 50), and histopathology changes in parenchymal organs of Wistar rats. MXP rapidly crossed the blood-brain barrier, reaching peak median concentrations in both serum and brain 30 min post-administration, followed by an elimination phase with a half-life of 2.15 h. Locomotor activity in the open field test displayed a dose-response effect at low to moderate doses (10-20 mg/kg MXP). At higher doses (40 mg/kg), locomotor activity decreased. All doses of MXP significantly disrupted prepulse inhibition and the effect was present during the onset of its action as well as 60 min after treatment. Additionally, MXP demonstrated moderate acute toxicity, with an estimated LD50 of 500 mg/kg when administered subcutaneously. In summary, MXP exhibited a profile similar to typical dissociative anesthetics, producing stimulant and anxiogenic effects at lower doses, sedative effects at higher doses, and disrupting sensorimotor gating. The accumulation of MXP in brain tissue is likely to contribute to acute intoxication in humans, potentially leading to negative experiences. Our findings highlight the potentially dangerous effects of recreational MXP use and underscore the risks of inducing serious adverse health outcomes.
- MeSH
- chování zvířat účinky léků MeSH
- krysa rodu rattus MeSH
- LD50 MeSH
- mozek účinky léků metabolismus MeSH
- piperidiny farmakokinetika farmakologie MeSH
- pohybová aktivita účinky léků MeSH
- potkani Wistar * MeSH
- prepulsní inhibice účinky léků MeSH
- test otevřeného pole účinky léků MeSH
- vztah mezi dávkou a účinkem léčiva * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
... 1299 -- Methomyl 1300 -- Methotrexate 1301 -- Methotrimeprazine 1303 -- Methoxetamine 1305 -- Methoxphenidine ...
Twelfth edition xli, 2343 stran : ilustrace ; 26 cm