PGLS regression
Dotaz
Zobrazit nápovědu
The surface area-to-volume ratio of cells is one of the key factors affecting fundamental biological processes and, thus, fitness of unicellular organisms. One of the general models for allometric increase in surface-to-volume scaling involves fractal-like elaboration of cellular surfaces. However, specific data illustrating this pattern in natural populations of the unicellular organisms have not previously been available. This study shows that unicellular green algae of the genus Micrasterias (Desmidiales) have positive allometric surface-to-volume scaling caused by changes in morphology of individual species, especially in the degree of cell lobulation. This allometric pattern was also detected within most of the cultured and natural populations analysed. Values of the allometric S:V scaling within individual populations were closely correlated to the phylogenetic structure of the clade. In addition, they were related to species-specific cellular morphology. Individual populations differed in their allometric patterns, and their position in the allometric space was strongly correlated with the degree of allometric S:V scaling. This result illustrates that allometric shape patterns are an important correlate of the capacity of individual populations to compensate for increases in their cell volumes by increasing the surface area. However, variation in allometric patterns was not associated with phylogenetic structure. This indicates that the position of the populations in the allometric space was not evolutionarily conserved and might be influenced by environmental factors.
Low resting metabolic rate (RMR) in subterranean rodents used to be considered as a physiological adaptation to cope with stresses of the belowground environment. In African mole-rats (Bathyergidae, Rodentia), RMR was reported to be independent of body mass. This deviation from a general mammalian pattern was considered a precondition for evolution of eusociality, occurring in some bathyergids. We measured metabolic rate and thermoregulation in the silvery mole-rat, Heliophobius argenteocinereus, the only bathyergid genus for which well-supported, comparable data were still missing. Low RMR (154.04 mL O(2) h(-1), which is 82% of the value predicted for a rodent) corresponds to the value expected in a subterranean rodent. Broad range of the thermoneutral zone (25-33 degrees C) and only slightly higher conductance (17.3 mL O(2) h(-1) degrees C(-1), i.e. 112.5% of that predicted for subterranean mammals) indicate that H. argenteocinereus is adapted to lower burrow temperatures rather than to high temperatures. Low RMR in this solitary species, as in other subterranean rodents in general, is probably associated particularly with high energetic cost of foraging. Our results combined with data on other mole-rats show clearly that RMR within the Bathyergidae is mass-dependent.
Many plant species have established self-sustaining populations outside their natural range because of human activities. Plants with selfing ability should be more likely to establish outside their historical range because they can reproduce from a single individual when mates or pollinators are not available. Here, we compile a global breeding-system database of 1,752 angiosperm species and use phylogenetic generalized linear models and path analyses to test relationships between selfing ability, life history, native range size and global naturalization status. Selfing ability is associated with annual or biennial life history and a large native range, which both positively correlate with the probability of naturalization. Path analysis suggests that a high selfing ability directly increases the number of regions where a species is naturalized. Our results provide robust evidence across flowering plants at the global scale that high selfing ability fosters alien plant naturalization both directly and indirectly.
- MeSH
- chov MeSH
- ekosystém MeSH
- fylogeneze MeSH
- květy MeSH
- lineární modely MeSH
- Magnoliopsida fyziologie MeSH
- opylení fyziologie MeSH
- regresní analýza MeSH
- rostlinné geny * MeSH
- semena rostlinná MeSH
- vývoj rostlin MeSH
- zavlečené druhy * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Seed germination traits in alpine grasslands are poorly understood, despite the sensitivity of these communities to climate change. We hypothesise that germination traits predict species occurrence along the alpine-subalpine elevation gradient. Phylogenetic comparative analyses were performed using fresh seeds of 22 species from alpine and subalpine grasslands (1600-2400 m) of the Cantabrian Mountains, Spain (43° N, 5° W). Laboratory experiments were conducted to characterise germinability, optimum germination temperature and effect of cold and warm stratification on dormancy breaking. Variability in these traits was reduced by phylogenetic principal component analysis (phyl.PCA). Phylogenetic generalised least squares regression (PGLS) was used to fit a model in which species average elevation was predicted from their position on the PCA axes. Most subalpine species germinated in snow-like conditions, whereas most alpine species needed accumulation of warm temperatures. Phylogenetic signal was low. PCA1 ordered species according to overall germinability, whilst PCA2 ordered them according to preference for warm or cold germination. PCA2 significantly predicted species occurrence in the alpine-subalpine gradient, as higher elevation species tended to have warmer germination preferences. Our results show that germination traits in high-mountain grasslands are closely linked to the alpine-subalpine gradient. Alpine species, especially those from stripped and wind-edge communities, prefer warmer germination niches, suggesting that summer emergence prevents frost damage during seedling establishment. In contrast, alpine snowfield and subalpine grassland plants have cold germination niches, indicating that winter emergence may occur under snow to avoid drought stress.
- MeSH
- fylogeneze MeSH
- klíčení * MeSH
- klimatické změny MeSH
- nízká teplota MeSH
- období sucha MeSH
- pastviny MeSH
- roční období MeSH
- semena rostlinná genetika fyziologie MeSH
- semenáček genetika fyziologie MeSH
- teplota MeSH
- tundra MeSH
- vegetační klid MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Geografické názvy
- Španělsko MeSH
While white-nose syndrome (WNS) has decimated hibernating bat populations in the Nearctic, species from the Palearctic appear to cope better with the fungal skin infection causing WNS. This has encouraged multiple hypotheses on the mechanisms leading to differential survival of species exposed to the same pathogen. To facilitate intercontinental comparisons, we proposed a novel pathogenesis-based grading scheme consistent with WNS diagnosis histopathology criteria. UV light-guided collection was used to obtain single biopsies from Nearctic and Palearctic bat wing membranes non-lethally. The proposed scheme scores eleven grades associated with WNS on histopathology. Given weights reflective of grade severity, the sum of findings from an individual results in weighted cumulative WNS pathology score. The probability of finding fungal skin colonisation and single, multiple or confluent cupping erosions increased with increase in Pseudogymnoascus destructans load. Increasing fungal load mimicked progression of skin infection from epidermal surface colonisation to deep dermal invasion. Similarly, the number of UV-fluorescent lesions increased with increasing weighted cumulative WNS pathology score, demonstrating congruence between WNS-associated tissue damage and extent of UV fluorescence. In a case report, we demonstrated that UV-fluorescence disappears within two weeks of euthermy. Change in fluorescence was coupled with a reduction in weighted cumulative WNS pathology score, whereby both methods lost diagnostic utility. While weighted cumulative WNS pathology scores were greater in the Nearctic than Palearctic, values for Nearctic bats were within the range of those for Palearctic species. Accumulation of wing damage probably influences mortality in affected bats, as demonstrated by a fatal case of Myotis daubentonii with natural WNS infection and healing in Myotis myotis. The proposed semi-quantitative pathology score provided good agreement between experienced raters, showing it to be a powerful and widely applicable tool for defining WNS severity.
- MeSH
- Ascomycota genetika fyziologie MeSH
- Chiroptera metabolismus mikrobiologie MeSH
- DNA fungální genetika MeSH
- fylogeneze MeSH
- kožní nemoci mikrobiologie patologie MeSH
- křídla zvířecí mikrobiologie patologie účinky záření MeSH
- lineární modely MeSH
- optické zobrazování MeSH
- stupeň závažnosti nemoci MeSH
- ultrafialové záření MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Rensch's rule predicts an allometric relationship between male and female body size stating that the sexual size dimorphism (SSD) increases with body size in male-larger taxa and decreases in female-larger taxa in groups of related species. It means that the relationship between the male and female body size is hyperallometric, i.e., the allometric exponent of this relationship exceeds the unity. We explored the relationship between the male and female body size in a New World clade of lizards consisting of sister families Teiidae and Gymnophthalmidae, which exhibit a great variation in both their adult body sizes and SSD. All our estimates of the reduced major axis regression slopes ranged from 1.067 to 1.229 and clearly followed a pattern consistent with the Rensch's rule. Despite a clear general trend, giant species from the subfamily Tupinambinae show paradoxically only poor SSD. The cases of extreme male-larger SSD were found in species of moderate body size belonging to the genera Ameiva and Cnemidophorus. The abovementioned deviations from the hyperallometric relationship between the male and female body size are surprising and require further examination.
- MeSH
- fylogeneze MeSH
- ještěři anatomie a histologie klasifikace fyziologie MeSH
- pohlavní dimorfismus * MeSH
- velikost těla fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Střední Amerika MeSH
Background and Aims: Polyploidy is arguably the single most important genetic mechanism in plant speciation and diversification. It has been repeatedly suggested that polyploids show higher vegetative reproduction than diploids (to by-pass low fertility after the polyploidization), but there are no rigorous tests of it. Methods: Data were analysed by phylogenetic regressions of clonal growth parameters, and vegetative reproduction in culture on the ploidy status of a large set of species (approx. 900) from the Central European Angiosperm flora. Further, correlated evolution of ploidy and clonal traits was examined to determine whether or not polyploidy precedes vegetative reproduction. Key Results: The analyses showed that polyploidy is strongly associated with vegetative reproduction, whereas diploids rely more on seed reproduction. The rate of polyploid speciation is strongly enhanced by the existence of vegetative reproduction (namely extensive lateral spread), whereas the converse is not true. Conclusions: These findings confirm the old hypothesis that polyploids can rely on vegetative reproduction which thus may save many incipient polyploids from extinction. A closer analysis also shows that the sequence of events begins with development of vegetative reproduction, which is then followed by polyploidy. Vegetative reproduction is thus likely to play an important role in polyploid speciation.
Ecological preferences, partner compatibility, or partner availability are known to be important factors shaping obligate and intimate lichen symbioses. We considered a complex of Cladonia species, traditionally differentiated by the extent of sexual reproduction and the type of vegetative propagules, to assess if the reproductive and dispersal strategies affect mycobiont-photobiont association patterns. In total 85 lichen thalli from 72 European localities were studied, two genetic markers for both Cladonia mycobionts and Asterochloris photobionts were analyzed. Variance partitioning analysis by multiple regression on distance matrices was performed to describe and partition variance in photobiont genetic diversity. Asexually reproducing Cladonia in our study were found to be strongly specific to their photobionts, associating with only two closely related Asterochloris species. In contrast, sexually reproducing lichens associated with seven unrelated Asterochloris lineages, thus being photobiont generalists. The reproductive mode had the largest explanatory power, explaining 44% of the total photobiont variability. Reproductive and dispersal strategies are the key factors shaping photobiont diversity in this group of Cladonia lichens. A strict photobiont specialisation observed in two studied species may steer both evolutionary flexibility and responses to ecological changes of these organisms, and considerably limit their distribution ranges.
- MeSH
- Ascomycota klasifikace MeSH
- biodiverzita * MeSH
- Chlorophyta klasifikace genetika MeSH
- fylogeneze MeSH
- lišejníky klasifikace genetika MeSH
- rozmnožování MeSH
- šíření semen fyziologie MeSH
- symbióza * MeSH
- zeměpis MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
Four new species of monoxenous kinetoplastid parasites are described from Brachycera flies, namely Wallaceina raviniae Votýpka et Lukes, 2014 and Crithidia otongatchiensis Votýpka et Lukes, 2014 from Ecuador, Leptomonas moramango Votypka et Lukes, 2014 from Madagascar, and Crithidia pragensis Votýpka, Klepetková et Lukes, 2014 from the Czech Republic. The new species are described here based on sequence analysis of their spliced leader (SL) RNA, glycosomal glyceraldehyde 3-phosphate dehydrogenase (gGAPDH) and small subunit (SSU) rRNA genes, as well as their morphology and ultrastructure. High-pressure freezing and Bernhard's EDTA regressive staining, used for the first time for monoxenous (one host) trypanosomatids, revealed the presence of viral particles with cytosolic localization in one and unique mitochondrial localization in another species. In accordance with previous observations, our results emphasize a discrepancy between morphology and molecular taxonomy of the family Trypanosomatidae. All four newly described species are represented by typical morphotypes (mainly choano- and promastigotes) and are virtually indistinguishable from other monoxenous trypanosomatids by morphology. Nevertheless, they all differ in their phylogenetic affinities. Whereas three of them grouped within the recently defined subfamily Leishmaniinae, which includes numerous representatives of the genera Leishmania Ross, 1903, Crithidia Léger, 1902 and Leptomonas Kent, 1880, the fourth species clusters together with the 'collosoma' clade (named after 'Leptomonas' collosoma Wallace, Clark, Dyer et Collins, 1960). Here we demonstrate that the 'collosoma' group represents the elusive genus Wallaceina Podlipaev, Frolov et Kolesnikov, 1999. We redefine this genus in molecular terms based on similarities of the respective molecular markers and propose to use this taxon name for the group of species of the 'collosoma' clade.
Biological age is typically estimated using biomarkers whose states have been observed to correlate with chronological age. A persistent limitation of such aging clocks is that it is difficult to establish how the biomarker states are related to the mechanisms of aging. Somatic mutations could potentially form the basis for a more fundamental aging clock since the mutations are both markers and drivers of aging and have a natural timescale. Cell lineage trees inferred from these mutations reflect the somatic evolutionary process, and thus, it has been conjectured, the aging status of the body. Such a timer has been impractical thus far, however, because detection of somatic variants in single cells presents a significant technological challenge. Here, we show that somatic mutations detected using single-cell RNA sequencing (scRNA-seq) from thousands of cells can be used to construct a cell lineage tree whose structure correlates with chronological age. De novo single-nucleotide variants (SNVs) are detected in human peripheral blood mononuclear cells using a modified protocol. A default model based on penalized multiple regression of chronological age on 31 metrics characterizing the phylogenetic tree gives a Pearson correlation of 0.81 and a median absolute error of ~4 years between predicted and chronological ages. Testing of the model on a public scRNA-seq dataset yields a Pearson correlation of 0.85. In addition, cell tree age predictions are found to be better predictors of certain clinical biomarkers than chronological age alone, for instance glucose, albumin levels, and leukocyte count. The geometry of the cell lineage tree records the structure of somatic evolution in the individual and represents a new modality of aging timer. In addition to providing a numerical estimate of "cell tree age," it unveils a temporal history of the aging process, revealing how clonal structure evolves over life span. Cell Tree Rings complements existing aging clocks and may help reduce the current uncertainty in the assessment of geroprotective trials.
- MeSH
- biologické markery MeSH
- dlouhověkost MeSH
- fylogeneze MeSH
- leukocyty mononukleární * MeSH
- lidé MeSH
- stárnutí * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH