blastogregarines Dotaz Zobrazit nápovědu
Blastogregarines are poorly studied parasites of polychaetes superficially resembling gregarines, but lacking syzygy and gametocyst stages in the life cycle. Furthermore, their permanent multinuclearity and gametogenesis by means of budding considerably distinguish them from other parasitic Apicomplexa such as coccidians and hematozoans. The affiliation of blastogregarines has been uncertain: different authors considered them highly modified gregarines, an intermediate apicomplexan lineage between gregarines and coccidians, or an isolated group of eukaryotes altogether. Here, we report the ultrastructure of two blastogregarine species, Siedleckia nematoides and Chattonaria mesnili, and provide the first molecular data on their phylogeny based on SSU, 5.8S, and LSU rDNA sequences. Morphological analysis reveals that blastogregarines possess both gregarine and coccidian features. Several traits shared with archigregarines likely represent the ancestral states of the corresponding cell structures for parasitic apicomplexans: a distinctive tegument structure and myzocytotic feeding with a well-developed apical complex. Unlike gregarines but similar to coccidians however, the nuclei of male blastogregarine gametes are associated with two kinetosomes. Molecular phylogenetic analyses reveal that blastogregarines are an independent, early diverging lineage of apicomplexans. Overall, the morphological and molecular evidence congruently suggests that blastogregarines represent a separate class of Apicomplexa.
- MeSH
- aktivace lymfocytů MeSH
- Apicomplexa klasifikace genetika růst a vývoj ultrastruktura MeSH
- bazální tělíska metabolismus MeSH
- elektronová mikroskopie MeSH
- fylogeneze * MeSH
- protozoální DNA genetika MeSH
- zárodečné buňky růst a vývoj ultrastruktura MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Recent studies on motility of Apicomplexa concur with the so-called glideosome concept applied for apicomplexan zoites, describing a unique mechanism of substrate-dependent gliding motility facilitated by a conserved form of actomyosin motor and subpellicular microtubules. In contrast, the gregarines and blastogregarines exhibit different modes and mechanisms of motility, correlating with diverse modifications of their cortex. This study focuses on the motility and cytoskeleton of the blastogregarine Siedleckia nematoides Caullery et Mesnil, 1898 parasitising the polychaete Scoloplos cf. armiger (Müller, 1776). The blastogregarine moves independently on a solid substrate without any signs of gliding motility; the motility in a liquid environment (in both the attached and detached forms) rather resembles a sequence of pendular, twisting, undulation, and sometimes spasmodic movements. Despite the presence of key glideosome components such as pellicle consisting of the plasma membrane and the inner membrane complex, actin, myosin, subpellicular microtubules, micronemes and glycocalyx layer, the motility mechanism of S. nematoides differs from the glideosome machinery. Nevertheless, experimental assays using cytoskeletal probes proved that the polymerised forms of actin and tubulin play an essential role in the S. nematoides movement. Similar to Selenidium archigregarines, the subpellicular microtubules organised in several layers seem to be the leading motor structures in blastogregarine motility. The majority of the detected actin was stabilised in a polymerised form and appeared to be located beneath the inner membrane complex. The experimental data suggest the subpellicular microtubules to be associated with filamentous structures (= cross-linking protein complexes), presumably of actin nature.