maximum deflection
Dotaz
Zobrazit nápovědu
Introduction: The heart rate performance curve (HRPC) in maximal incremental cycle ergometer exercise demonstrated three different patterns such as downward, linear or inverse versions. The downward pattern was found to be the most common and therefore termed regular. These patterns were shown to differently influence exercise prescription, but no data are available for running. This study investigated the deflection of the HRPC in maximal graded treadmill tests (GXT) of the 4HAIE study. Methods: Additional to maximal values, the first and second ventilatory thresholds as well as the degree and the direction of the HRPC deflection (kHR) were determined from 1,100 individuals (489 women) GXTs. HRPC deflection was categorized as downward (kHR < -0.1), linear (-0.1 ≤ kHR ≤ 0.1) or inverse (kHR > 0.1) curves. Four (even split) age- and two (median split) performance-groups were used to investigate the effects of age and performance on the distribution of regular (= downward deflection) and non-regular (= linear or inverse course) HR curves for male and female subjects. Results: Men (age: 36.8 ± 11.9 years, BMI: 25.0 ± 3.3 kg m-2, VO2max: 46.4 ± 9.4 mL min-1. kg-1) and women (age: 36.2 ± 11.9 years, BMI: 23.3 ± 3.7 kg m-2, VO2max: 37.4 ± 7.8 mL min-1. kg-1) presented 556/449 (91/92%) downward deflecting, 10/8 (2/2%) linear and 45/32 (7/6%) inverse HRPC ́s. Chi-squared analysis revealed a significantly higher number of non-regular HRPC ́s in the low-performance group and with increasing age. Binary logistic regression revealed that the odds ratio (OR) to show a non-regular HRPC is significantly affected by maximum performance (OR = 0.840, 95% CI = 0.754-0.936, p = 0.002) and age (OR = 1.042, 95% CI = 1.020-1.064, p < 0.001) but not sex. Discussion: As in cycle ergometer exercise, three different patterns for the HRPC were identified from the maximal graded treadmill exercise with the highest frequency of regular downward deflecting curves. Older subjects and subjects with a lower performance level had a higher probability to show a non-regular linear or inverted curve which needs to be considered for exercise prescription.
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Cardiac sarcoidosis (CS) with right ventricular (RV) involvement can mimic arrhythmogenic right ventricular cardiomyopathy (ARVC). Histopathological differences may result in disease-specific RV activation patterns detectable on the 12-lead electrocardiogram. Dominant subepicardial scar in ARVC leads to delayed activation of areas with reduced voltages, translating into terminal activation delay and occasionally (epsilon) waves with a small amplitude. Conversely, patchy transmural RV scar in CS may lead to conduction block and therefore late activated areas with preserved voltages reflected as preserved R' waves. OBJECTIVE: The purpose of this study was to evaluate the distinct terminal activation patterns in precordial leads V1 through V3 as a discriminator between CS and ARVC. METHODS: Thirteen patients with CS affecting the RV and 23 patients with gene-positive ARVC referred for ventricular tachycardia ablation were retrospectively included in a multicenter approach. A non-ventricular-paced 12-lead surface electrocardiogram was analyzed for the presence and the surface area of the R' wave (any positive deflection from baseline after an S wave) in leads V1 through V3. RESULTS: An R' wave in leads V1 through V3 was present in all patients with CS compared to 11 (48%) patients with ARVC (P = .002). An algorithm including a PR interval of ≥220 ms, the presence of an R' wave, and the surface area of the maximum R' wave in leads V1 through V3 of ≥1.65 mm2 had 85% sensitivity and 96% specificity for diagnosing CS, validated in a second cohort (18 CS and 40 ARVC) with 83% sensitivity and 88% specificity. CONCLUSION: An easily applicable algorithm including PR prolongation and the surface area of the maximum R' wave in leads V1 through V3 of ≥1.65 mm2 distinguishes CS from ARVC. This QRS terminal activation in precordial leads V1 through V3 may reflect disease-specific scar patterns.
- MeSH
- arytmogenní dysplazie pravé komory komplikace diagnóza patofyziologie MeSH
- diferenciální diagnóza MeSH
- dospělí MeSH
- elektrokardiografie * MeSH
- kardiomyopatie komplikace diagnóza patofyziologie MeSH
- komorová tachykardie komplikace diagnóza patofyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- následné studie MeSH
- retrospektivní studie MeSH
- sarkoidóza diagnóza patofyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH