optimal hematocrit theory
Dotaz
Zobrazit nápovědu
In humans and many animals, a trade-off between a sufficiently high concentration of erythrocytes (hematocrit) to bind oxygen and sufficiently low blood viscosity to allow rapid blood flow has been achieved during evolution. The optimal value lies between the extreme cases of pure blood plasma, which cannot practically transport any oxygen, and 100% hematocrit, which would imply very slow blood flow or none at all. As oxygen delivery to tissues is the main task of the cardiovascular system, it is reasonable to expect that maximum oxygen delivery has been achieved during evolution. Optimal hematocrit theory, based on this optimality principle, has been successful in predicting hematocrit values of about 0.3-0.5, which are indeed observed in the systemic circulation of humans and many animal species. Similarly, the theory can explain why a hematocrit higher than normal, ranging from 0.5 to 0.7, can promote better exertional performance. Here, we present a review of theoretical approaches to the calculation of the optimal hematocrit value under different conditions and discuss them in a broad physiological context. Several physiological and medical implications are outlined, for example, in view of blood doping, temperature adaptation, dehydration, and life at high altitudes.
- MeSH
- erytrocyty fyziologie metabolismus MeSH
- hematokrit metody MeSH
- kyslík * krev metabolismus MeSH
- lidé MeSH
- modely kardiovaskulární MeSH
- viskozita krve fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
In humans and higher animals, a trade-off between sufficiently high erythrocyte concentrations to bind oxygen and sufficiently low blood viscosity to allow rapid blood flow has been achieved during evolution. Optimal hematocrit theory has been successful in predicting hematocrit (HCT) values of about 0.3-0.5, in very good agreement with the normal values observed for humans and many animal species. However, according to those calculations, the optimal value should be independent of the mechanical load of the body. This is in contradiction to the exertional increase in HCT observed in some animals called natural blood dopers and to the illegal practice of blood boosting in high-performance sports. Here, we present a novel calculation to predict the optimal HCT value under the constraint of constant cardiac power and compare it to the optimal value obtained for constant driving pressure. We show that the optimal HCT under constant power ranges from 0.5 to 0.7, in agreement with observed values in natural blood dopers at exertion. We use this result to explain the tendency to better exertional performance at an increased HCT.
- MeSH
- hematokrit * MeSH
- lidé MeSH
- modely kardiovaskulární * MeSH
- sportovní výkon MeSH
- srdce fyziologie MeSH
- tělesná námaha MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH