toxSAS Dotaz Zobrazit nápovědu
RelA-SpoT Homolog (RSH) enzymes control bacterial physiology through synthesis and degradation of the nucleotide alarmone (p)ppGpp. We recently discovered multiple families of small alarmone synthetase (SAS) RSH acting as toxins of toxin-antitoxin (TA) modules, with the FaRel subfamily of toxSAS abrogating bacterial growth by producing an analog of (p)ppGpp, (pp)pApp. Here we probe the mechanism of growth arrest used by four experimentally unexplored subfamilies of toxSAS: FaRel2, PhRel, PhRel2, and CapRel. Surprisingly, all these toxins specifically inhibit protein synthesis. To do so, they transfer a pyrophosphate moiety from ATP to the tRNA 3' CCA. The modification inhibits both tRNA aminoacylation and the sensing of cellular amino acid starvation by the ribosome-associated RSH RelA. Conversely, we show that some small alarmone hydrolase (SAH) RSH enzymes can reverse the pyrophosphorylation of tRNA to counter the growth inhibition by toxSAS. Collectively, we establish RSHs as RNA-modifying enzymes.
- MeSH
- bakteriální toxiny genetika metabolismus farmakologie MeSH
- fosforylace účinky léků MeSH
- grampozitivní nesporulující tyčinky chemie metabolismus MeSH
- guanosinpentafosfát chemie metabolismus MeSH
- inhibitory syntézy proteinů farmakologie MeSH
- ligasy chemie genetika metabolismus MeSH
- proteosyntéza účinky léků fyziologie MeSH
- pyrofosfatasy MeSH
- ribozomy metabolismus MeSH
- RNA transferová metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Under stressful conditions, bacterial RelA-SpoT Homolog (RSH) enzymes synthesize the alarmone (p)ppGpp, a nucleotide second messenger. (p)ppGpp rewires bacterial transcription and metabolism to cope with stress, and, at high concentrations, inhibits the process of protein synthesis and bacterial growth to save and redirect resources until conditions improve. Single-domain small alarmone synthetases (SASs) are RSH family members that contain the (p)ppGpp synthesis (SYNTH) domain, but lack the hydrolysis (HD) domain and regulatory C-terminal domains of the long RSHs such as Rel, RelA, and SpoT. We asked whether analysis of the genomic context of SASs can indicate possible functional roles. Indeed, multiple SAS subfamilies are encoded in widespread conserved bicistronic operon architectures that are reminiscent of those typically seen in toxin-antitoxin (TA) operons. We have validated five of these SASs as being toxic (toxSASs), with neutralization by the protein products of six neighboring antitoxin genes. The toxicity of Cellulomonas marina toxSAS FaRel is mediated by the accumulation of alarmones ppGpp and ppApp, and an associated depletion of cellular guanosine triphosphate and adenosine triphosphate pools, and is counteracted by its HD domain-containing antitoxin. Thus, the ToxSAS-antiToxSAS system with its multiple different antitoxins exemplifies how ancient nucleotide-based signaling mechanisms can be repurposed as TA modules during evolution, potentially multiple times independently.
- MeSH
- adeninnukleotidy metabolismus MeSH
- Bacteria růst a vývoj metabolismus MeSH
- bakteriální proteiny metabolismus MeSH
- databáze genetické MeSH
- fyziologický stres fyziologie MeSH
- guanosinpentafosfát metabolismus MeSH
- guanosintetrafosfát metabolismus MeSH
- guanosintrifosfát metabolismus MeSH
- ligasy metabolismus MeSH
- pyrofosfatasy metabolismus MeSH
- regulace genové exprese u bakterií genetika MeSH
- signální transdukce MeSH
- systémy toxin-antitoxin fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH