Wastewaters belong among the most important sources of environmental pollution, including antibiotic-resistant bacteria. The aim of the study was to evaluate treated wastewaters as a possible transmission pathway for bacterial colonisation of gulls occupying the receiving river. A collection of antibiotic-resistant Escherichia coli originating both from treated municipal wastewaters discharged to the river Svratka (Czech Republic) and nestlings of Black-headed Gull (Chroicocephalus ridibundus) living 35 km downstream of the outlet was obtained using selective cultivation. Isolates were further characterised by various phenotyping and genotyping methods. From a total of 670 E. coli isolates (450 from effluents, 220 from gulls), 86 isolates (41 from effluents, 45 from gulls) showed identical antibiotic resistance phenotype and genotype and were further analysed for clonal relatedness using pulsed-field gel electrophoresis (PFGE). Despite the overall high diversity of the isolates, 21 isolates from both sources showed similar PFGE profiles. Isolates belonging to epidemiologically important sequence types (ST131, 15 isolates; ST23, three isolates) were subjected to whole-genome sequencing. Subsequent phylogenetic analysis did not reveal any close clonal relationship between the isolates from the effluents and gulls' nestlings with the closest strains showing 90 SNPs difference. Although our study did not provide direct evidence of transmission of antibiotic-resistant E. coli to wild gulls via treated wastewaters, we observed gull chicks as carriers of diverse multi-resistant E. coli, including high-risk clones, posing risk of further bacterial contamination of the surrounding environment.
- Publikační typ
- časopisecké články MeSH
Wild birds including raptors can act as vectors of clinically relevant bacteria with antibiotic resistance. The aim of this study was to investigate the occurrence of antibiotic-resistant Escherichia coli in black kites (Milvus migrans) inhabiting localities in proximity to human-influenced environments in southwestern Siberia and investigate their virulence and plasmid contents. A total of 51 E. coli isolates mostly with multidrug resistance (MDR) profiles were obtained from cloacal swabs of 35 (64%, n = 55) kites. Genomic analyses of 36 whole genome sequenced E. coli isolates showed: (i) high prevalence and diversity of their antibiotic resistance genes (ARGs) and common association with ESBL/AmpC production (27/36, 75%), (ii) carriage of mcr-1 for colistin resistance on IncI2 plasmids in kites residing in proximity of two large cities, (iii) frequent association with class one integrase (IntI1, 22/36, 61%), and (iv) presence of sequence types (STs) linked to avian-pathogenic (APEC) and extra-intestinal pathogenic E. coli (ExPEC). Notably, numerous isolates had significant virulence content. One E. coli with APEC-associated ST354 carried qnrE1 encoding fluoroquinolone resistance on IncHI2-ST3 plasmid, the first detection of such a gene in E. coli from wildlife. Our results implicate black kites in southwestern Siberia as reservoirs for antibiotic-resistant E. coli. It also highlights the existing link between proximity of wildlife to human activities and their carriage of MDR bacteria including pathogenic STs with significant and clinically relevant antibiotic resistance determinants. IMPORTANCE Migratory birds have the potential to acquire and disperse clinically relevant antibiotic-resistant bacteria (ARB) and their associated antibiotic resistance genes (ARGs) through vast geographical regions. The opportunistic feeding behavior associated with some raptors including black kites and the growing anthropogenic influence on their natural habitats increase the transmission risk of multidrug resistance (MDR) and pathogenic bacteria from human and agricultural sources into the environment and wildlife. Thus, monitoring studies investigating antibiotic resistance in raptors may provide essential data that facilitate understanding the fate and evolution of ARB and ARGs in the environment and possible health risks for humans and animals associated with the acquisition of these resistance determinants by wildlife.
- MeSH
- antagonisté receptorů pro angiotenzin MeSH
- antibakteriální látky farmakologie MeSH
- divoká zvířata MeSH
- Escherichia coli * MeSH
- inhibitory ACE MeSH
- lidé MeSH
- mnohočetná bakteriální léková rezistence genetika MeSH
- proteiny z Escherichia coli * genetika MeSH
- ptáci mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Sibiř MeSH
Poultry represents a common source of bacteria with resistance to antibiotics including the critically important ones. Selective cultivation using colistin, cefotaxime and meropenem was performed for 66 chicken samples coming from 12 farms in Paraguay while two breeding companies supplied the farms. A total of 62 Escherichia coli and 22 Klebsiella pneumoniae isolates were obtained and representative isolates were subjected to whole-genome sequencing. Relatively high prevalence of phylogenetic group D and F was observed in E. coli isolates and several zoonotic sequence types (STs) including ST457 (14 isolates), ST38 (5), ST10 (2), ST117 (2) or ST93 (4) were detected. Isolates from three farms, which purchased chicken from a Paraguayan hatchery showed higher prevalence of mcr-5.1 and blaCTX-M-8 compared to the other nine farms, which purchased chickens from a Brazilian hatchery. Moreover, none of the K. pneumoniae isolates were linked to the Paraguayan hatchery. ESBL/AmpC and mcr-5-carrying multi-drug resistant (MDR) plasmids were characterized, and complete sequences were obtained for eight plasmids. The study shed light on Paraguayan poultry farms as a reservoir of antibiotic resistance commonly conferred via MDR plasmids and showed linkage between resistance and origin of the chickens at the hatcheries level.
- Publikační typ
- časopisecké články MeSH
Wild corvids were examined for the presence of carbapenemase-producing Gram-negative bacteria in the United States. A total of 13 isolates were detected among 590 fecal samples of American crow; 11 Providencia rettgeri isolates harboring blaIMP-27 on the chromosome as a class 2 integron gene cassette within the Tn7 transposon, 1 Klebsiella pneumoniae ST258 isolate carrying blaKPC-2 on a pKpQIL-like plasmid as a part of Tn4401a, and 1 Enterobacter bugandensis isolate with blaIMI-1 located within EcloIMEX-2.
- MeSH
- antibakteriální látky farmakologie MeSH
- bakteriální proteiny genetika MeSH
- beta-laktamasy genetika MeSH
- Enterobacter MeSH
- infekce bakteriemi rodu Klebsiella * MeSH
- Klebsiella pneumoniae genetika MeSH
- mikrobiální testy citlivosti MeSH
- plazmidy genetika MeSH
- Providencia MeSH
- vrány * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Spojené státy americké MeSH
Silver gulls carry phylogenetically diverse Escherichia coli, including globally dominant extraintestinal pathogenic E. coli (ExPEC) sequence types and pandemic ExPEC-ST131 clades; however, our large-scale study (504 samples) on silver gulls nesting off the coast of New South Wales identified E. coli ST457 as the most prevalent. A phylogenetic analysis of whole-genome sequences (WGS) of 138 ST457 samples comprising 42 from gulls, 2 from humans (Australia), and 14 from poultry farmed in Paraguay were compared with 80 WGS deposited in public databases from diverse sources and countries. E. coli ST457 strains are phylogenetic group F, carry fimH145, and partition into five main clades in accordance to predominant flagella H-antigen carriage. Although we identified considerable phylogenetic diversity among the 138 ST457 strains, closely related subclades (<100 SNPs) suggested zoonotic or zooanthroponosis transmission between humans, wild birds, and food-producing animals. Australian human clinical and gull strains in two of the clades were closely related (≤80 SNPs). Regarding plasmid content, country, or country/source, specific connections were observed, including I1/ST23, I1/ST314, and I1/ST315 disseminating blaCMY-2 in Australia, I1/ST113 carrying blaCTX-M-8 and mcr-5 in Paraguayan poultry, and F2:A-:B1 plasmids of Dutch origin being detected across multiple ST457 clades. We identified a high prevalence of nearly identical I1/ST23 plasmids carrying blaCMY-2 among Australian gull and clinical human strains. In summary, ST457 is a broad host range, geographically diverse E. coli lineage that can cause human extraintestinal disease, including urinary tract infection, and displays a remarkable ability to capture mobile elements that carry and transmit genes encoding resistance to critically important antibiotics.
- MeSH
- antibakteriální látky farmakologie MeSH
- beta-laktamasy genetika MeSH
- beta-laktamy MeSH
- divoká zvířata MeSH
- Escherichia coli * genetika MeSH
- fylogeneze MeSH
- infekce vyvolané Escherichia coli * veterinární MeSH
- lidé MeSH
- plazmidy genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Austrálie MeSH
A total of 266 wild passerine birds (Passeriformes) representing eight species and nine subspecies from three islands of the Archipelago of the Azores were examined for ectoparasites. Two species of louse-flies Ornithomya avicularia and Ornithoica turdi (Diptera: Hippoboscidae), three species of fleas Ceratophyllus gallinae, Ceratophyllus sp. and Dasypsyllus gallinulae (Siphonaptera: Ceratophyllidae), and 11 species of chewing lice belonging to the genera Menacanthus, Myrsidea (Phthiraptera: Menoponidae), Ricinus (Phthiraptera: Ricinidae), Brueelia, Guimaraesiella, Philopterus, Sturnidoecus and Turdinirmus (Phthiraptera: Philopteridae) were recorded. At least one species of ectoparasite was found on 114 birds of six species. Guimaraesiella tovornikae and Myrsidea sylviae from Sylvia atricapilla are redescribed. Records of Ceratophyllus sp. and Sturnidoecus sp. from Turdus merula represent new parasite-host associations. Phoresy of Guimaraesiella amsel on Ornithoica turdi was also found. Parasitological parameters such as prevalence, intensity and abundance and geographic distribution of recorded ectoparasites are provided.
- MeSH
- Diptera fyziologie MeSH
- hmyz * fyziologie MeSH
- infestace ektoparazity * parazitologie MeSH
- nemoci ptáků * epidemiologie parazitologie MeSH
- Passeriformes * parazitologie MeSH
- Phthiraptera fyziologie MeSH
- Siphonaptera fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Azory MeSH
Birds are hosts for several zoonotic pathogens. Because of their high mobility, especially of longdistance migrants, birds can disperse these pathogens, affecting their distribution and phylogeography. We focused on Borrelia burgdorferi sensu lato, which includes the causative agents of Lyme borreliosis, as an example for tick-borne pathogens, to address the role of birds as propagation hosts of zoonotic agents at a large geographical scale. We collected ticks from passerine birds in 11 European countries. B. burgdorferi s.l. prevalence in Ixodes spp. was 37% and increased with latitude. The fieldfare Turdus pilaris and the blackbird T. merula carried ticks with the highest Borrelia prevalence (92 and 58%, respectively), whereas robin Erithacus rubecula ticks were the least infected (3.8%). Borrelia garinii was the most prevalent genospecies (61%), followed by B. valaisiana (24%), B. afzelii (9%), B. turdi (5%) and B. lusitaniae (0.5%). A novel Borrelia genospecies "Candidatus Borrelia aligera" was also detected. Multilocus sequence typing (MLST) analysis of B. garinii isolates together with the global collection of B. garinii genotypes obtained from the Borrelia MLST public database revealed that: (a) there was little overlap among genotypes from different continents, (b) there was no geographical structuring within Europe, and (c) there was no evident association pattern detectable among B. garinii genotypes from ticks feeding on birds, questing ticks or human isolates. These findings strengthen the hypothesis that the population structure and evolutionary biology of tick-borne pathogens are shaped by their host associations and the movement patterns of these hosts.
- MeSH
- Borrelia genetika MeSH
- klíště mikrobiologie MeSH
- lidé MeSH
- lymeská nemoc mikrobiologie MeSH
- multilokusová sekvenční typizace metody MeSH
- nemoci ptáků mikrobiologie MeSH
- zpěvní ptáci mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
- MeSH
- antibakteriální látky farmakologie MeSH
- bakteriální léková rezistence genetika MeSH
- Escherichia coli genetika MeSH
- infekce vyvolané Escherichia coli veterinární MeSH
- kloaka mikrobiologie MeSH
- kur domácí mikrobiologie MeSH
- plazmidy genetika MeSH
- proteiny z Escherichia coli genetika MeSH
- transferasy pro jiné substituované fosfátové skupiny genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- dopisy MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Paraguay MeSH
The gene mcr-1 conferring resistance to last-line antibiotic colistin has been reported globally. Here, we describe the first detection of plasmid-mediated colistin resistance in Russian wildlife, an isolate of Escherichia coli sequence type 2280 from a black kite (Milvus migrans) scavenging raptor. Whole-genome sequencing and plasmid transferability experiments revealed that mcr-1.1 was located on conjugative IncI2 plasmid pDR164 (59891 bp). Migratory black kites may contribute to the global spread of mobile colistin resistance.
- MeSH
- antibakteriální látky metabolismus farmakologie MeSH
- bakteriální léková rezistence genetika MeSH
- dravci mikrobiologie MeSH
- Escherichia coli účinky léků enzymologie genetika izolace a purifikace MeSH
- infekce vyvolané Escherichia coli epidemiologie mikrobiologie přenos veterinární MeSH
- kolistin metabolismus farmakologie MeSH
- migrace zvířat MeSH
- mikrobiální testy citlivosti MeSH
- plazmidy chemie metabolismus MeSH
- proteiny z Escherichia coli genetika MeSH
- sekvenování celého genomu MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Rusko MeSH
Wild animals foraging in the human-influenced environment are colonized by bacteria with clinically important antibiotic resistance. The occurrence of such bacteria in wildlife is influenced by various biological, ecological, and geographical factors which have not yet been fully understood. More research focusing on the human-animal-environmental interface and using novel approaches is required to understand the role of wild animals in the transmission of antibiotic resistance and to assess potential risks for the public health.
- MeSH
- antibakteriální látky farmakologie MeSH
- Bacteria účinky léků enzymologie genetika MeSH
- bakteriální léková rezistence MeSH
- bakteriální proteiny genetika metabolismus MeSH
- beta-laktamasy genetika metabolismus MeSH
- divoká zvířata mikrobiologie MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH