Emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants diminishes the efficacy of vaccines and antiviral monoclonal antibodies. Continued development of immunotherapies and vaccine immunogens resilient to viral evolution is therefore necessary. Using coldspot-guided antibody discovery, a screening approach that focuses on portions of the virus spike glycoprotein that are both functionally relevant and averse to change, we identified human neutralizing antibodies to highly conserved viral epitopes. Antibody fp.006 binds the fusion peptide and cross-reacts against coronaviruses of the four genera, including the nine human coronaviruses, through recognition of a conserved motif that includes the S2' site of proteolytic cleavage. Antibody hr2.016 targets the stem helix and neutralizes SARS-CoV-2 variants. Antibody sd1.040 binds to subdomain 1, synergizes with antibody rbd.042 for neutralization, and, similar to fp.006 and hr2.016, protects mice expressing human angiotensin-converting enzyme 2 against infection when present as a bispecific antibody. Thus, coldspot-guided antibody discovery reveals donor-derived neutralizing antibodies that are cross-reactive with Orthocoronavirinae, including SARS-CoV-2 variants.
- MeSH
- COVID-19 * MeSH
- epitopy MeSH
- glykoprotein S, koronavirus MeSH
- lidé MeSH
- myši MeSH
- neutralizační testy MeSH
- neutralizující protilátky * MeSH
- protilátky virové MeSH
- SARS-CoV-2 MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Leishmania parasites cause a variety of symptoms, including mucocutaneous leishmaniasis, which results in the destruction of the mucous membranes of the nose, mouth, and throat. The species of Leishmania carrying Leishmania RNA virus 1 (LRV1), from the family Totiviridae, are more likely to cause severe disease and are less sensitive to treatment than those that do not contain the virus. Although the importance of LRV1 for the severity of leishmaniasis was discovered a long time ago, the structure of the virus remained unknown. Here, we present a cryo-electron microscopy reconstruction of the virus-like particle of LRV1 determined to a resolution of 3.65 Å. The capsid has icosahedral symmetry and is formed by 120 copies of a capsid protein assembled in asymmetric dimers. RNA genomes of viruses from the family Totiviridae are synthetized, but not capped at the 5' end, by virus RNA polymerases. To protect viral RNAs from degradation, capsid proteins of the L-A totivirus cleave the 5' caps of host mRNAs, creating decoys to overload the cellular RNA quality control system. Capsid proteins of LRV1 form positively charged clefts, which may be the cleavage sites for the 5' cap of Leishmania mRNAs. The putative RNA binding site of LRV1 is distinct from that of the related L-A virus. The structure of the LRV1 capsid enables the rational design of compounds targeting the putative decapping site. Such inhibitors may be developed into a treatment for mucocutaneous leishmaniasis caused by LRV1-positive species of LeishmaniaIMPORTANCE Twelve million people worldwide suffer from leishmaniasis, resulting in more than 30 thousand deaths annually. The disease has several variants that differ in their symptoms. The mucocutaneous form, which leads to disintegration of the nasal septum, lips, and palate, is caused predominantly by Leishmania parasites carrying Leishmania RNA virus 1 (LRV1). Here, we present the structure of the LRV1 capsid determined using cryo-electron microscopy. Capsid proteins of a related totivirus, L-A virus, protect viral RNAs from degradation by cleaving the 5' caps of host mRNAs. Capsid proteins of LRV1 may have the same function. We show that the LRV1 capsid contains positively charged clefts that may be sites for the cleavage of mRNAs of Leishmania cells. The structure of the LRV1 capsid enables the rational design of compounds targeting the putative mRNA cleavage site. Such inhibitors may be used as treatments for mucocutaneous leishmaniasis.
- MeSH
- elektronová kryomikroskopie MeSH
- genom virový MeSH
- kapsida chemie metabolismus MeSH
- Leishmaniavirus chemie genetika metabolismus MeSH
- RNA virová genetika metabolismus MeSH
- virové plášťové proteiny chemie genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Catalase is one of the most abundant enzymes on Earth. It decomposes hydrogen peroxide, thus protecting cells from dangerous reactive oxygen species. The catalase-encoding gene is conspicuously absent from the genome of most representatives of the family Trypanosomatidae. Here, we expressed this protein from the Leishmania mexicana Β-TUBULIN locus using a novel bicistronic expression system, which relies on the 2A peptide of Teschovirus A. We demonstrated that catalase-expressing parasites are severely compromised in their ability to develop in insects, to be transmitted and to infect mice, and to cause clinical manifestation in their mammalian host. Taken together, our data support the hypothesis that the presence of catalase is not compatible with the dixenous life cycle of Leishmania, resulting in loss of this gene from the genome during the evolution of these parasites.
- MeSH
- faktory virulence genetika metabolismus MeSH
- katalasa genetika metabolismus MeSH
- kultivované buňky MeSH
- Leishmania mexicana genetika růst a vývoj patogenita MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- protozoální proteiny genetika MeSH
- Psychodidae parazitologie MeSH
- stadia vývoje genetika MeSH
- Teschovirus genetika MeSH
- virulence MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Leishmaniases are neglected tropical diseases and Leishmania (Leishmania) infantum and Leishmania (Viannia) braziliensis are the most important causative agents of leishmaniases in the New World. These two parasite species may co-circulate in a given endemic area but their interactions in the vector have not been studied yet. We conducted experimental infections using both single infections and co-infections to compare the development of L. (L.) infantum (OGVL/mCherry) and L. (V.) braziliensis (XB29/GFP) in Lutzomyia longipalpis and Lutzomyia migonei. Parasite labelling by different fluorescein proteins enabled studying interspecific competition and localization of different parasite species during co-infections. Both Leishmania species completed their life cycle, producing infective forms in both sand fly species studied. The same happens in the co infections, demonstrating that the two parasites conclude their development and do not compete with each other. However, infections produced by L. (L.) infantum reached higher rates and grew more vigorously, as compared to L. (V.) braziliensis. In late-stage infections, L. (L.) infantum was present in all midgut regions, showing typical suprapylarian type of development, whereas L. (V.) braziliensis was concentrated in the hindgut and the abdominal midgut (peripylarian development). We concluded that both Lu. migonei and Lu. longipalpis are equally susceptible vectors for L. (L.) infantum, in laboratory colonies. In relation to L. (V.) braziliensis, Lu. migonei appears to be more susceptible to this parasite than Lu. longipalpis.
- MeSH
- hmyz - vektory parazitologie MeSH
- Leishmania braziliensis růst a vývoj fyziologie MeSH
- Leishmania infantum růst a vývoj fyziologie MeSH
- Psychodidae parazitologie MeSH
- stadia vývoje MeSH
- trávicí systém parazitologie MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Leishmania are obligate intracellular parasites known to have developed successful ways of efficient immunity evasion. Because of this, leishmaniasis, a disease caused by these flagellated protists, is ranked as one of the most serious tropical infections worldwide. Neither prophylactic medication, nor vaccination has been developed thus far, even though the infection has usually led to strong and long-lasting immunity. In this paper, we describe a "suicidal" system established in Leishmaniamexicana, a human pathogen causing cutaneous leishmaniasis. This system is based on the expression and (de)stabilization of a basic phospholipase A2 toxin from the Bothropspauloensis snake venom, which leads to the inducible cell death of the parasites in vitro. Furthermore, the suicidal strain was highly attenuated during macrophage infection, regardless of the toxin stabilization. Such a deliberately weakened parasite could be used to vaccinate the host, as its viability is regulated by the toxin stabilization, causing a profoundly reduced pathogenesis.
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Trypanosomatids of the genus Leishmania are parasites of mammals or reptiles transmitted by bloodsucking dipterans. Many species of these flagellates cause important human diseases with clinical symptoms ranging from skin sores to life-threatening damage of visceral organs. The genus Leishmania contains four subgenera: Leishmania, Sauroleishmania, Viannia, and Mundinia. The last subgenus has been established recently and remains understudied, although Mundinia contains human-infecting species. In addition, it is interesting from the evolutionary viewpoint, representing the earliest branch within the genus and possibly with a different type of vector. Here we analyzed the genomes of L. (M.) martiniquensis, L. (M.) enriettii and L. (M.) macropodum to better understand the biology and evolution of these parasites. RESULTS: All three genomes analyzed were approximately of the same size (~ 30 Mb) and similar to that of L. (Sauroleishmania) tarentolae, but smaller than those of the members of subgenera Leishmania and Viannia, or the genus Endotrypanum (~ 32 Mb). This difference was explained by domination of gene losses over gains and contractions over expansions at the Mundinia node, although only a few of these genes could be identified. The analysis predicts significant changes in the Mundinia cell surface architecture, with the most important ones relating to losses of LPG-modifying side chain galactosyltransferases and arabinosyltransferases, as well as β-amastins. Among other important changes were gene family contractions for the oxygen-sensing adenylate cyclases and FYVE zinc finger-containing proteins. CONCLUSIONS: We suggest that adaptation of Mundinia to different vectors and hosts has led to alternative host-parasite relationships and, thereby, made some proteins redundant. Thus, the evolution of genomes in the genus Leishmania and, in particular, in the subgenus Mundinia was mainly shaped by host (or vector) switches.
- MeSH
- délka genomu MeSH
- fylogeneze MeSH
- genomika MeSH
- hostitelská specificita MeSH
- Leishmania klasifikace genetika MeSH
- molekulární evoluce MeSH
- ploidie MeSH
- protozoální proteiny genetika MeSH
- regulace genové exprese MeSH
- sekvenování celého genomu metody MeSH
- sekvenování exomu MeSH
- stanovení celkové genové exprese metody MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Leishmania virulence factors responsible for the complicated epidemiology of the various leishmaniases remain mainly unidentified. This study is a characterization of a gene previously identified as upregulated in two of three overlapping datasets containing putative factors important for Leishmania's ability to establish mammalian intracellular infection and to colonize the gut of an insect vector. METHODOLOGY/PRINCIPAL FINDINGS: The investigated gene encodes ATP/GTP binding motif-containing protein related to Leishmania development 1 (ALD1), a cytosolic protein that contains a cryptic ATP/GTP binding P-loop. We compared differentiation, growth rates, and infective abilities of wild-type and ALD1 null mutant cell lines of L. mexicana. Loss of ALD1 results in retarded growth kinetics but not defects in differentiation in axenic culture. Similarly, when mice and the sand fly vector were infected with the ALD1 null mutant, the primary difference in infection and colonization phenotype relative to wild type was an inability to achieve maximal host pathogenicity. While ability of the ALD1 null mutant cells to infect macrophages in vitro was not affected, replication within macrophages was clearly curtailed. CONCLUSIONS/SIGNIFICANCE: L. mexicana ALD1, encoding a protein with no assigned functional domains or motifs, was identified utilizing multiple comparative analyses with the related and often experimentally overlooked monoxenous flagellates. We found that it plays a role in Leishmania infection and colonization in vitro and in vivo. Results suggest that ALD1 functions in L. mexicana's general metabolic network, rather than function in specific aspect of virulence as anticipated from the compared datasets. This result validates our comparative genomics approach for finding relevant factors, yet highlights the importance of quality laboratory-based analysis of genes tagged by these methods.
- MeSH
- hmyz - vektory parazitologie MeSH
- Leishmania mexicana genetika patogenita MeSH
- leishmanióza kožní parazitologie MeSH
- makrofágy parazitologie MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- proteiny vázající GTP genetika metabolismus MeSH
- protozoální proteiny genetika metabolismus MeSH
- Psychodidae parazitologie MeSH
- virulence MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Targeted regulation of protein levels is an important tool to investigate the role of proteins essential for cell function and development. In recent years, methods based on the Escherichia coli dihydrofolate reductase destabilization domain (ecDHFR DD) have been established and used in various cell types. ecDHFR DD destabilizes the fused protein of interest and causes its degradation by proteasomes, unless it is stabilized by a specific ligand, trimethoprim. In this work we developed an inducible protein stabilization system in Leishmania mexicana based on ecDHFR DD.
- MeSH
- aktivace transkripce * MeSH
- dihydrofolátreduktasa genetika metabolismus MeSH
- Escherichia coli enzymologie genetika MeSH
- Leishmania mexicana genetika metabolismus MeSH
- molekulární biologie metody MeSH
- parazitologie metody MeSH
- regulace genové exprese * MeSH
- rekombinantní proteiny genetika metabolismus MeSH
- trimethoprim metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
In our previous work we established a T7 polymerase-driven Tetracycline-inducible protein expression system in Leishmania mexicana (Biagi, 1953). We used this system to analyse gene expression profiles during development of L. mexicana in procyclic and metacyclic promastigotes and amastigotes. The transcription of the gene of interest and the T7 polymerase genes was significantly reduced upon cell differentiation. This regulation is not locus-specific. It depends on untranslated regions flanking open reading frames of the genes analysed. In this paper, we report that the previously established conventional inducible protein expression system may not be suitable for studies on differentiation of species of Leishmania Ross, 1903 and protein expression systems might have certain limitations.