Biogas desulfurization based on anoxygenic photosynthetic processes represents an alternative to physicochemical technologies, decreasing the risk of O2 and N2 contamination. This work aimed at assessing the potential of Allochromatium vinosum and Chlorobium limicola for biogas desulfurization under different light intensities (10 and 25 klx) and H2S concentrations (1 %, 1.5 % and 2 %) in batch photobioreactors. In addition, the influence of rising biogas flow rates (2.9, 5.8 and 11.5 L d-1 in stage I, II and III, respectively) on the desulfurization performance in a 2.3 L photobioreactor utilizing C. limicola under continuous mode was assessed. The light intensity of 25 klx negatively influenced the growth of A. vinosum and C. limicola, resulting in decreased H2S removal capacity. An increase in H2S concentrations resulted in higher volumetric H2S removal rates in C. limicola (2.9-5.3 mg L-1 d-1) tests compared to A. vinosum (2.4-4.6 mg L-1 d-1) tests. The continuous photobioreactor completely removed H2S from biogas in stage I and II. The highest flow rate in stage III induced a deterioration in the desulfurization activity of C. limicola. Overall, the high H2S tolerance of A. vinosum and C. limicola supports their use in H2S desulfurization from biogas.
- MeSH
- biopaliva MeSH
- Chlorobi * MeSH
- fotobioreaktory MeSH
- sulfan * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
During the millions of years of evolution, photosynthetic organisms have adapted to almost all terrestrial and aquatic habitats, although some environments are obviously more suitable for photosynthesis than others. Photosynthetic organisms living in low-light conditions require on the one hand a large light-harvesting apparatus to absorb as many photons as possible. On the other hand, the excitation trapping time scales with the size of the light-harvesting system, and the longer the distance over which the formed excitations have to be transferred, the larger the probability to lose excitations. Therefore a compromise between photon capture efficiency and excitation trapping efficiency needs to be found. Here we report results on the whole cells of the green sulfur bacterium Chlorobaculum tepidum. Its efficiency of excitation energy transfer and charge separation enables the organism to live in environments with very low illumination. Using fluorescence measurements with picosecond resolution, we estimate that despite a rather large size and complex composition of its light-harvesting apparatus, the quantum efficiency of its photochemistry is around ~87% at 20 °C, ~83% at 45 °C, and about ~81% at 77 K when part of the excitation energy is trapped by low-energy bacteriochlorophyll a molecules. The data are evaluated using target analysis, which provides further insight into the functional organization of the low-light adapted photosynthetic apparatus.
- MeSH
- bakteriochlorofyl A fyziologie MeSH
- Chlorobi fyziologie MeSH
- fluorescence MeSH
- fluorometrie metody MeSH
- fotochemie * MeSH
- fotosyntéza * MeSH
- fyziologická adaptace MeSH
- přenos energie fyziologie MeSH
- světlosběrné proteinové komplexy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Sulphide-driven anoxygenic photosynthesis is an ancient microbial metabolism that contributes significantly to inorganic carbon fixation in stratified, sulphidic water bodies. Methods commonly applied to quantify inorganic carbon fixation by anoxygenic phototrophs, however, cannot resolve the contributions of distinct microbial populations to the overall process. We implemented a straightforward workflow, consisting of radioisotope labelling and flow cytometric cell sorting based on the distinct autofluorescence of bacterial photopigments, to discriminate and quantify contributions of co-occurring anoxygenic phototrophic populations to in situ inorganic carbon fixation in environmental samples. This allowed us to assign 89.3% ± 7.6% of daytime inorganic carbon fixation by anoxygenic phototrophs in Lake Rogoznica (Croatia) to an abundant chemocline-dwelling population of green sulphur bacteria (dominated by Chlorobium phaeobacteroides), whereas the co-occurring purple sulphur bacteria (Halochromatium sp.) contributed only 1.8% ± 1.4%. Furthermore, we obtained two metagenome assembled genomes of green sulphur bacteria and one of a purple sulphur bacterium which provides the first genomic insights into the genus Halochromatium, confirming its high metabolic flexibility and physiological potential for mixo- and heterotrophic growth.
- MeSH
- Chlorobium izolace a purifikace metabolismus MeSH
- Chromatiaceae izolace a purifikace metabolismus MeSH
- fotosyntéza MeSH
- jezera mikrobiologie MeSH
- koloběh uhlíku MeSH
- mořská voda mikrobiologie MeSH
- síra metabolismus MeSH
- sulfidy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Chorvatsko MeSH
A polyhistidine tag (His-tag) present on Chlorobaculum tepidum reaction centers (RCs) was used to immobilize photosynthetic complexes on a silver nanowire (AgNW) modified with nickel-chelating nitrilo-triacetic acid (Ni-NTA). The optical properties of conjugated nanostructures were studied using wide-field and confocal fluorescence microscopy. Plasmonic enhancement of RCs conjugated to AgNWs was observed as their fluorescence intensity dependence on the excitation wavelength does not follow the excitation spectrum of RC complexes in solution. The strongest effect of plasmonic interactions on the emission intensity of RCs coincides with the absorption spectrum of AgNWs and is observed for excitation into the carotenoid absorption. From the absence of fluorescence decay shortening, we attribute the emission enhancement to increase of absorption in RC complexes.
While mechanisms of different carbon dioxide (CO2 ) assimilation pathways in chemolithoautotrohic prokaryotes are well understood for many isolates under laboratory conditions, the ecological significance of diverse CO2 fixation strategies in the environment is mostly unexplored. Six stratified freshwater lakes were chosen to study the distribution and diversity of the Calvin-Benson-Bassham (CBB) cycle, the reductive tricarboxylic acid (rTCA) cycle, and the recently discovered archaeal 3-hydroxypropionate/4-hydroxybutyrate (HP/HB) pathway. Eleven primer sets were used to amplify and sequence genes coding for selected key enzymes in the three pathways. Whereas the CBB pathway with different forms of RubisCO (IA, IC and II) was ubiquitous and related to diverse bacterial taxa, encompassing a wide range of potential physiologies, the rTCA cycle in Epsilonproteobacteria and Chloribi was exclusively detected in anoxic water layers. Nitrifiying Nitrosospira and Thaumarchaeota, using the rTCA and HP/HB cycle respectively, are important residents in the aphotic and (micro-)oxic zone of deep lakes. Both taxa were of minor importance in surface waters and in smaller lakes characterized by an anoxic hypolimnion. Overall, this study provides a first insight on how different CO2 fixation strategies and chemical gradients in lakes are associated to the distribution of chemoautotrophic prokaryotes with different functional traits.
- MeSH
- Archaea metabolismus MeSH
- chemoautotrofní růst fyziologie MeSH
- Chlorobi genetika metabolismus MeSH
- citrátový cyklus fyziologie MeSH
- Epsilonproteobacteria genetika metabolismus MeSH
- fotosyntéza fyziologie MeSH
- hydroxybutyráty metabolismus MeSH
- jezera chemie mikrobiologie MeSH
- koloběh uhlíku fyziologie MeSH
- kyselina mléčná analogy a deriváty metabolismus MeSH
- oxid uhličitý metabolismus MeSH
- ribulosa-1,5-bisfosfát-karboxylasa genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
Chlorobaculum tepidum is a representative of green sulfur bacteria, a group of anoxygenic photoautotrophs that employ chlorosomes as the main light-harvesting structures. Chlorosomes are coupled to a ferredoxin-reducing reaction center by means of the Fenna-Matthews-Olson (FMO) protein. While the biochemical properties and physical functioning of all the individual components of this photosynthetic machinery are quite well understood, the native architecture of the photosynthetic supercomplexes is not. Here we report observations of membrane-bound FMO and the analysis of the respective FMO-reaction center complex. We propose the existence of a supercomplex formed by two reaction centers and four FMO trimers based on the single-particle analysis of the complexes attached to native membrane. Moreover, the structure of the photosynthetic unit comprising the chlorosome with the associated pool of RC-FMO supercomplexes is proposed.
- MeSH
- bakteriální proteiny chemie metabolismus ultrastruktura MeSH
- Chlorobi chemie MeSH
- cytoplazma chemie MeSH
- fotosyntetické reakční centrum - proteinové komplexy chemie metabolismus MeSH
- intracelulární membrány chemie MeSH
- světlosběrné proteinové komplexy chemie metabolismus ultrastruktura MeSH
- transmisní elektronová mikroskopie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Chlorosomes, the light-harvesting antennae of green photosynthetic bacteria, are based on large aggregates of bacteriochlorophyll molecules. Aggregates with similar properties to those in chlorosomes can also be prepared in vitro. Several agents were shown to induce aggregation of bacteriochlorophyll c in aqueous environments, including certain lipids, carotenes, and quinones. A key distinguishing feature of bacteriochlorophyll c aggregates, both in vitro and in chlorosomes, is a large (>60 nm) red shift of their Q(y) absorption band compared with that of the monomers. In this study, we investigate the self-assembly of bacteriochlorophyll c with the xanthophyll astaxanthin, which leads to the formation of a new type of complexes. Our results indicate that, due to its specific structure, astaxanthin molecules competes with bacteriochlorophylls for the bonds involved in the aggregation, thus preventing the formation of any significant red shift compared with pure bacteriochlorophyll c in aqueous buffer. A strong interaction between both the types of pigments in the developed assemblies, is manifested by a rather efficient (~40%) excitation energy transfer from astaxanthin to bacteriochlorophyll c, as revealed by fluorescence excitation spectroscopy. Results of transient absorption spectroscopy show that the energy transfer is very fast (<500 fs) and proceeds through the S(2) state of astaxanthin.
- MeSH
- bakteriální proteiny chemie izolace a purifikace metabolismus MeSH
- bakteriochlorofyly chemie izolace a purifikace metabolismus MeSH
- Chlorobium chemie MeSH
- fotosyntéza MeSH
- přenos energie * MeSH
- spektrální analýza MeSH
- světlo MeSH
- světlosběrné proteinové komplexy chemie metabolismus MeSH
- xanthofyly chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Chlorosomes from green photosynthetic bacteria are large photosynthetic antennae containing self-assembling aggregates of bacteriochlorophyll c, d, or e. The pigments within chlorosomes are organized in curved lamellar structures. Aggregates with similar optical properties can be prepared in vitro, both in polar as well as non-polar solvents. In order to gain insight into their structure we examined hexane-induced aggregates of purified bacteriochlorophyll c by X-ray scattering. The bacteriochlorophyll c aggregates exhibit scattering features that are virtually identical to those of native chlorosomes demonstrating that the self-assembly of these pigments is fully encoded in their chemical structure. Thus, the hexane-induced aggregates constitute an excellent model to study the effects of chemical structure on assembly. Using bacteriochlorophyllides transesterified with different alcohols we have established a linear relationship between the esterifying alcohol length and the lamellar spacing. The results provide a structural basis for lamellar spacing variability observed for native chlorosomes from different species. A plausible physiological role of this variability is discussed. The X-ray scattering also confirmed the assignments of peaks, which arise from the crystalline baseplate in the native chlorosomes.
- MeSH
- alkoholy chemie MeSH
- anizotropie MeSH
- bakteriochlorofyly chemie metabolismus MeSH
- buněčné struktury metabolismus MeSH
- Chlorobium metabolismus MeSH
- esterifikace MeSH
- hexany chemie MeSH
- kvarterní struktura proteinů MeSH
- radiační rozptyl MeSH
- rentgenové záření MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH