OBJECTIVES: To evaluate the effect of short-term inhalational exposure to nanoparticles released during dental composite grinding on oxidative stress and antioxidant capacity markers. MATERIALS AND METHODS: Twenty-four healthy volunteers were examined before and after exposure in dental workshop. They spent 76.8 ± 0.7 min in the testing room during grinding of dental nanocomposites. The individual exposure to aerosol particles in each participant ́s breathing zones was monitored using a personal nanoparticle sampler (PENS). Exhaled breath condensate (EBC), blood, and urine samples were collected pre- and post-exposure to measure one oxidative stress marker, i.e., thiobarbituric acid reactive substances (TBARS), and two biomarkers of antioxidant capacity, i.e., ferric-reducing antioxidant power (FRAP) and reduced glutathione (GSH) by spectrophotometry. Spirometry and fractional exhaled nitric oxide (FeNO) were used to evaluate the effect of acute inhalational exposure. RESULTS: Mean mass of dental nanocomposite ground away was 0.88 ± 0.32 g. Average individual doses of respirable particles and nanoparticles measured by PENS were 380 ± 150 and 3.3 ± 1.3 μg, respectively. No significant increase of the post-exposure oxidative stress marker TBARS in EBC and plasma was seen. No decrease in antioxidant capacity biomarkers FRAP and GSH in EBC post-exposure was seen, either. Post-exposure, conjunctival hyperemia was seen in 62.5% volunteers; however, no impairment in spirometry or FeNO results was observed. No correlation of any biomarker measured with individual exposure was found, however, several correlations with interfering factors (age, body mass index, hypertension, dyslipidemia, and environmental pollution parameters) were seen. CONCLUSIONS: This study, using oxidative stress biomarker and antioxidant capacity biomarkers in biological fluids of volunteers during the grinding of dental nanocomposites did not prove a negative effect of this intense short-term exposure. However, further studies are needed to evaluate oxidative stress in long-term exposure of both stomatologists and patients and diverse populations with varying health statuses.
- MeSH
- antioxidancia analýza MeSH
- biologické markery * analýza MeSH
- dechové testy MeSH
- dospělí MeSH
- glutathion analýza MeSH
- inhalační expozice * škodlivé účinky analýza MeSH
- látky reagující s kyselinou thiobarbiturovou analýza MeSH
- lidé MeSH
- nanokompozity * chemie MeSH
- oxid dusnatý analýza metabolismus MeSH
- oxidační stres * MeSH
- pracovní expozice * analýza škodlivé účinky MeSH
- zubní lékaři MeSH
- zubní materiály MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
The emergence of biofilm-induced drug tolerance poses a critical challenge to public healthcare management. Pseudomonas aeruginosa, a gram-negative opportunistic bacterium, is involved in various biofilm-associated infections in human hosts. Towards this direction, in the present study, a combinatorial approach has been explored as it is a demonstrably effective strategy for managing microbial infections. Thus, P. aeruginosa has been treated with cuminaldehyde (a naturally occurring phytochemical) and gentamicin (an aminoglycoside antibiotic) in connection to the effective management of the biofilm challenges. It was also observed that the test molecules could show increased antimicrobial activity against P. aeruginosa. A fractional inhibitory concentration index (FICI) of 0.65 suggested an additive interaction between cuminaldehyde and gentamicin. Besides, a series of experiments such as crystal violet assay, estimation of extracellular polymeric substance (EPS), and microscopic images indicated that an enhanced antibiofilm activity was obtained when the selected compounds were applied together on P. aeruginosa. Furthermore, the combination of the selected compounds was found to reduce the secretion of virulence factors from P. aeruginosa. Taken together, this study suggested that the combinatorial application of cuminaldehyde and gentamicin could be considered an effective approach towards the control of biofilm-linked infections caused by P. aeruginosa.
- MeSH
- antibakteriální látky * farmakologie MeSH
- benzaldehydy * farmakologie MeSH
- biofilmy * účinky léků MeSH
- cymeny farmakologie MeSH
- faktory virulence MeSH
- gentamiciny * farmakologie MeSH
- lidé MeSH
- mikrobiální testy citlivosti * MeSH
- Pseudomonas aeruginosa * účinky léků fyziologie MeSH
- synergismus léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Background: Lipocalin-2 (LCN2) is a protein that has been associated with skeletal muscle regeneration, but details regarding its role in Arthritis remain unclear. The aim of the current study was to investigate LCN2 levels of Arthritis patients and its relationship with oxidative and antioxidative factors.Methods: The study includes (125) blood samples of persons aged 20-65 years were divided into a control group (apparently healthy) consisting of 55 samples [31female, 24 males] and a Patient group consisting of 70 samples [37female, 33 males] who were attending the bone diseases consultation unit at the Ibn Sina Teaching Hospital in Mosul, Iraq. Venous blood samples (10 ml) were collected after overnight fasting. To conduct Clinical analyses: Serum LCN2 level was determined by ELISA, also Malonaldehyde, glutathione, vitamin E, vitamin C, peroxy nitrite, peroxidase, and aryl esterase were estimated.Results: The findings revealed a significant increase in the levels of LCN2 in Arthritis compared to the control group and there was a significant decrease in the concentration of vitamin C, glutathione, vitamin E and the activity of the arylesterase in serum of patients with arthritis compared with the control group. Also, a significant increase in the activity of peroxidase, concentration of peroxynitrite and malondialdehyde for patients than a control group.Conclusion: These findings imply that LCN2 may play a substantial role in iron-related oxidative stress damage in arthritis. Thus a therapeutic candidate target for treatment.
Acetaldehyde can be found in human cells as a byproduct of various metabolic pathways, including oxidative processes such as lipid peroxidation. This secondary product of lipid peroxidation plays a role in various pathological processes, leading to various types of civilization diseases. In this study, the formation of free acetaldehyde induced by oxygen-centred radicals was studied in monocyte-like cell line U937. Exposure of U937 cells to peroxyl/alkoxyl radicals induced by azocompound resulted in the formation of free acetaldehyde. Acetaldehyde is formed by the cleavage of fatty acids, which represents the breakdown of fatty acids into smaller fragments initiated by the cyclization of lipid peroxyl radical and β-scission of lipid alkoxyl radical. The cleavage of fatty acids alters the integrity of the plasma and nuclear membrane, leading to the loss of cell viability. Understanding the pathological processes of acetaldehyde formation is an active area of research with potential implications for preventing and treating various diseases associated with oxidative stress.
- MeSH
- acetaldehyd * MeSH
- lidé MeSH
- mastné kyseliny metabolismus MeSH
- monocyty * metabolismus MeSH
- peroxidace lipidů MeSH
- reaktivní formy kyslíku MeSH
- U937 buňky MeSH
- volné radikály metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Formalin, an aqueous solution of formaldehyde, has been the gold standard for fixation of histological samples for over a century. Despite its considerable advantages, growing evidence points to objective toxicity, particularly highlighting its carcinogenicity and mutagenic effects. In 2016, the European Union proposed a ban, but a temporary permission was granted in consideration of its fundamental role in the medical-diagnostic field. In the present study, we tested an innovative fixative, glyoxal acid-free (GAF) (a glyoxal solution deprived of acids), which allows optimal tissue fixation at structural and molecular level combined with the absence of toxicity and carcinogenic activity. An open-label, non-inferiority, multicentric trial was performed comparing fixation of histological specimens with GAF fixative vs standard phosphate-buffered formalin (PBF), evaluating the morphological preservation and the diagnostic value with four binary score questions answered by both the central pathology reviewer and local center reviewers. The mean of total score in the GAF vs PBF fixative groups was 3.7 ± 0.5 vs 3.9 ± 0.3 for the central reviewer and 3.8 ± 0.5 vs 4.0 ± 0.1 for the local pathologist reviewers, respectively. In terms of median value, similar results were observed between the two fixative groups, with a median value of 4.0. Data collected indicate the non-inferiority of GAF as compared to PBF for all organs tested. The present clinical performance study, performed following the international standard for performance evaluation of in vitro diagnostic medical devices, highlights the capability of GAF to ensure both structural preservation and diagnostic value of the preparations.
Plants are subjected to a variety of abiotic stressors, including drought stress, that are fatal to their growth and ability to produce under natural conditions. Therefore, the present study was intended to investigate the drought tolerance potential of faba bean (Vicia faba L.) plants under the co-application of biochar and rhizobacteria, Cellulomonas pakistanensis (National Culture Collection of Pakistan (NCCP)11) and Sphingobacterium pakistanensis (NCCP246). The experiment was initiated by sowing the inoculated seeds with the aforementioned rhizobacterial strains in earthen pots filled with 3 kg of sand-mixed soil and 5% biochar. The morphology of biochar was observed with highly porous nature, along with the detection of various essential elements. The biochemical and physiological data showed that phenolic compounds and osmolytes were adversely affected by the induction of drought stress. However, the application of biochar and rhizobacteria boosted the level of flavonoids on average by 52.03%, total phenols by 50.67%, soluble sugar by 82.85%, proline by 76.81%, glycine betaine by 107.25%, and total protein contents by 89.18% in all co-treatments of biochar and rhizobacteria. In addition, stress indicator compounds, including malondialdehyde (MDA) contents and H2O2, were remarkably alleviated by 54.21% and 47.03%, respectively. Similarly, the amplitude of antioxidant enzymes including catalase, peroxidase, superoxide dismutase, ascorbate peroxidase, and guaiacol peroxidase was also enhanced by 63.80%, 80.95%, 37.87%, and 58.20%, respectively, in all co-treatments of rhizobacteria and biochar. Conclusively, biochar and rhizobacteria have a magnificent role in enhancing the drought tolerance potential of crop plants by boosting the physio-biochemical traits and enhancing the level of antioxidant enzymes.
- MeSH
- antioxidancia metabolismus MeSH
- dřevěné a živočišné uhlí * chemie MeSH
- fenoly metabolismus MeSH
- flavonoidy metabolismus analýza MeSH
- fyziologický stres * MeSH
- kořeny rostlin mikrobiologie růst a vývoj MeSH
- malondialdehyd metabolismus MeSH
- období sucha * MeSH
- půdní mikrobiologie MeSH
- Vicia faba * mikrobiologie růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
Introduction: Smoking poses a risk to flap viability, with nicotine being a major contributor to the formation of free radicals. Allopurinol, known for its antioxidant properties, has been shown to enhance tissue survival in ischemic conditions by reducing the production of reactive oxygen species (ROS). This study aims to assess the impact of allopurinol on the viability and success of skin flaps in Wistar rats exposed to nicotine. Methods: This study examined skin flap survival in nicotine-exposed rats treated with allopurinol. Twenty-eight rats were separated into two groups. During 1 month of nicotine exposure, the treatment group received systemic allopurinol 7 days before and 2 days after the flap procedure, while the control group received no allopurinol. Pro-angiogenic factors, proinflammatory factors, anti-inflammatory factors, and oxidative markers were assessed on the 7th day after the flap procedure using enzyme-linked immunosorbent assay method. Macroscopic flap viability was evaluated on the 7th day using Image J photos. Results: As an oxidative marker, malondialdehyde levels were significantly lower in rats given allopurinol than in controls (P < 0.001). The levels of interleukin 6 and tumor necrosis factor α, as markers of inflammatory factors, were significantly lower in the group of rats given allopurinol compared to controls (P < 0.001). The level of angiogenesis in rats given allopurinol, measured by vascular endothelial growth factor levels, was also higher in the treatment group compared to controls (P < 0.001). Macroscopically, the percentage of distal flap necrosis in Wistar rats given allopurinol was lower and statistically significant compared to controls (P < 0.001). Conclusions: Xanthine oxidoreductase is part of a group of enzymes involved in reactions that produce ROS. Allopurinol, as an effective inhibitor of the xanthine oxidase enzyme, can reduce oxidative stress by decreasing the formation of ROS. This reduction in oxidative stress mitigates the risk of ischemic-reperfusion injury effects and significantly increases the viability of Wistar rat flaps exposed to nicotine.
- MeSH
- alopurinol * farmakologie terapeutické užití MeSH
- interleukin-6 analýza MeSH
- malondialdehyd analýza MeSH
- nikotin * aplikace a dávkování farmakologie škodlivé účinky MeSH
- oxidační stres účinky léků MeSH
- potkani Wistar MeSH
- TNF-alfa analýza účinky léků MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- klinická studie MeSH
Koletsky rats, the genetically obese strain of spontaneously hypertensive rats (SHROB), are the well-accepted animal model of human metabolic syndrome. They are characterized by early onset obesity, spontaneous hypertension, hyperinsulinemia, hyperlipidemia, proteinuria and shortened life-span. One of the factors in the pathogenesis of metabolic syndrome is oxidative stress. The aim of the present study was to compare two parameters related to oxidative stress: the levels of the main intracellular antioxidant, reduced glutathione as well as the indirect indicator of lipid peroxidation damage, thiobarbituric acid-reactive substances (TBARS) in heart, renal cortex and medulla and liver in male lean spontaneously hypertensive rats (SHR) and obese Koletsky rats. We did not find any significant differences in these markers in heart and kidneys. However, we found significantly lower glutathione level in Koletsky rat liver compared with SHR (5.03+/-0.23 vs. 5.83+/-0.14 μmol/g tissue, respectively). On the contrary, we observed significantly higher TBARS levels in Koletsky rat liver compared with SHR (28.56+/-2.15 vs. 21.83+/-1.60 nmol/mg protein, respectively). We conclude that the liver is the most sensitive tissue to oxidative damage with the significantly decreased concentration of glutathione and the significantly increased concentration of TBARS in obese Koletsky rats in comparison with lean control SHR.
- MeSH
- glutathion * metabolismus MeSH
- hypertenze metabolismus MeSH
- játra * metabolismus MeSH
- krysa rodu rattus MeSH
- látky reagující s kyselinou thiobarbiturovou metabolismus MeSH
- ledviny metabolismus MeSH
- myokard metabolismus MeSH
- obezita * metabolismus MeSH
- oxidační stres * fyziologie MeSH
- peroxidace lipidů * MeSH
- potkani inbrední SHR * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Oxidative stress status, as a disruption of redox homeostasis, in the blood sera of Wistar rats caused by repeated application of selected acetylcholinesterase reactivators - asoxime, obidoxime, K027, K048, K074, and K075 were evaluated. Throughout this study, each oxime in a dose of 0.1 of LD50/kg im was given 2x/week for 4 weeks. Then, seven days after the last oximes' application, markers of lipid peroxidation (malondialdehyde, MDA), and protein oxidation (advanced oxidation protein products, AOPP), as well as the activity of antioxidant enzymes (catalase, CAT, superoxide dismutase, SOD, reduced glutathione, GSH, and oxidized glutathione, GSSG), were determined. Oxidative stress parameters, MDA and AOPP were significantly highest in the K048-, K074- and K075-treated groups (p < 0.001). The activity of CAT was significantly elevated in the obidoxime-treated group (p < 0.05), while treatment with K027, K048, and K074 induced high elevation in SOD levels (p < 0.01, p < 0.001). Interestingly, the activity of GSH in each oxime-treated group was significantly elevated. Unlike, treatment with obidoxime caused elevation in GSSG levels (p < 0.01). As a continuation of our previously published data, these results assure that applied oximes following subacute treatment ameliorated the oxidative status and further adverse systemic toxic effects in rats.
- MeSH
- antioxidancia metabolismus farmakologie MeSH
- biologické markery * krev MeSH
- glutathion * krev metabolismus MeSH
- katalasa metabolismus krev MeSH
- krysa rodu rattus MeSH
- malondialdehyd krev metabolismus MeSH
- oxidační stres * účinky léků MeSH
- oximy * farmakologie MeSH
- peroxidace lipidů účinky léků MeSH
- potkani Wistar * MeSH
- produkty pokročilé oxidace proteinů krev MeSH
- reaktivátory cholinesterasy farmakologie MeSH
- superoxiddismutasa metabolismus krev MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Polysaccharides like hyaluronan (HA) and chondroitin sulfate (CS) are native of the brain's extracellular matrix crucial for myelination and brain maturation. Despite extensive research on HA and CS as drug delivery systems (DDS), their high water solubility limits their application as drug carriers. This study introduces an injectable DDS using aldehyde-modified hyaluronic acid (HAOX) hydrogel containing polyelectrolyte complexes (PEC) formed with calcium, gelatin, and either CS or aldehyde-modified CS (CSOX) to deliver minocycline for Multiple Sclerosis therapy. PECs with CSOX enable covalent crosslinking to HAOX, creating immobilized PECs (HAOX_PECOX), while those with CS remain unbound (HAOX_PECS). The in situ forming DDS can be administered via a 20 G needle, with rapid gelation preventing premature leakage. The system integrates into an implanted device for minocycline release through either Fickian or anomalous diffusion, depending on PEC immobilization. HAOX_PECOX reduced burst release by 88 %, with a duration of 127 h for 50 % release. The DDS exhibited an elastic modulus of 3800 Pa and a low swelling ratio (0-1 %), enabling precise control of minocycline release kinetics. Released minocycline reduced IL-6 secretion in the Whole Blood Monocytes Activation Test, suggesting that DDS formation may not alter the biological activity of the loaded drug.
- MeSH
- aldehydy chemie MeSH
- chondroitinsulfáty * chemie MeSH
- hydrogely * chemie farmakologie MeSH
- interleukin-6 metabolismus MeSH
- kyselina hyaluronová * chemie MeSH
- lékové transportní systémy metody MeSH
- lidé MeSH
- minocyklin * chemie farmakologie aplikace a dávkování MeSH
- nosiče léků * chemie MeSH
- polyelektrolyty * chemie MeSH
- uvolňování léčiv MeSH
- želatina * chemie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH