conductivity
Dotaz
Zobrazit nápovědu
OBJECTIVE: Electroglottography (EGG) is a widely used noninvasive method that purports to measure changes in relative vocal fold contact area (VFCA) during phonation. Despite its broad application, the putative direct relation between the EGG waveform and VFCA has to date only been formally tested in a single study, suggesting an approximately linear relationship. However, in that study, flow-induced vocal fold (VF) vibration was not investigated. A rigorous empirical evaluation of EGG as a measure of VFCA under proper physiological conditions is therefore still needed. METHODS/DESIGN: Three red deer larynges were phonated in an excised hemilarynx preparation using a conducting glass plate. The time-varying contact between the VF and the glass plate was assessed by high-speed video recordings at 6000 fps, synchronized to the EGG signal. RESULTS: The average differences between the normalized [0, 1] VFCA and EGG waveforms for the three larynges were 0.180 (±0.156), 0.075 (±0.115), and 0.168 (±0.184) in the contacting phase and 0.159 (±0.112), -0.003 (±0.029), and 0.004 (±0.032) in the decontacting phase. DISCUSSIONS AND CONCLUSIONS: Overall, there was a better agreement between VFCA and the EGG waveform in the decontacting phase than in the contacting phase. Disagreements may be caused by nonuniform tissue conductance properties, electrode placement, and electroglottograph hardware circuitry. Pending further research, the EGG waveform may be a reasonable first approximation to change in medial contact area between the VFs during phonation. However, any quantitative and statistical data derived from EGG should be interpreted cautiously, allowing for potential deviations from true VFCA.
- MeSH
- audiovizuální záznam MeSH
- biomechanika MeSH
- elektrodiagnostika metody MeSH
- fonace * MeSH
- hlasové řasy anatomie a histologie fyziologie MeSH
- laryngoskopie * MeSH
- počítačové zpracování signálu MeSH
- reprodukovatelnost výsledků MeSH
- vibrace MeSH
- vysoká zvěř MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
Specialized literature presents a number of models describing the function of the vocal folds. In most of those models, an emphasis is placed on the air flowing through the glottis and, further, on the effect of the parameters of the air alone (its mass, speed, and so forth). The article focuses on the constructional definition of artificial vocal folds and their experimental analysis. The analysis is conducted for voiced source voice phonation and for the changing mean value of the subglottal pressure. The article further deals with the analysis of the pressure of the airflow through the vocal folds, which is cut (separated) into individual pulses by the vibrating vocal folds. The analysis results show that air pulse characteristics are relevant to voice generation, as they are produced by the flowing air and vibrating vocal folds. A number of artificial vocal folds have been constructed to date, and the aforementioned view of their phonation is confirmed by their analysis. The experiments have confirmed that man is able to consciously affect only two parameters of the source voice, that is, its fundamental frequency and voice intensity. The main forces acting on the vocal folds during phonation are as follows: subglottal air pressure and elastic and inertia forces of the vocal folds' structure. The correctness of the function of the artificial vocal folds is documented by the experimental verification of the spectra of several types of artificial vocal folds.
- MeSH
- biologické modely MeSH
- časové faktory MeSH
- fonace MeSH
- hlasové řasy anatomie a histologie fyziologie MeSH
- kvalita hlasu MeSH
- lidé MeSH
- reologie MeSH
- tlak MeSH
- umělé orgány MeSH
- vibrace MeSH
- vzduch MeSH
- zvuková spektrografie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Speech is controlled by axial neuromotor systems, therefore, it is highly sensitive to the effects of neurodegenerative illnesses such as Parkinson's Disease (PD). Patients suffering from PD present important alterations in speech, which are manifested in phonation, articulation, prosody, and fluency. These alterations may be evaluated using statistical methods on features obtained from glottal, spectral, cepstral, or fractal descriptions of speech. This work introduces an evaluation paradigm based on Information Theory (IT) to differentiate the effects of PD and aging on glottal amplitude distributions. The study is conducted on a database including 48 PD patients (24 males, 24 females), 48 age-matched healthy controls (HC, 24 males, 24 females), and 48 mid-age normative subjects (NS, 24 males, 24 females). It may be concluded from the study that Hierarchical Clustering (HiCl) methods produce a clear separation between the phonation of PD patients from NS subjects (accuracy of 89.6% for both male and female subsets), but the separation between PD patients and HC subjects is less efficient (accuracy of 75.0% for the male subset and 70.8% for the female subset). Conversely, using feature selection and Support Vector Machine (SVM) classification, the differentiation between PD and HC is substantially improved (accuracy of 94.8% for the male subset and 92.8% for the female subset). This improvement was mainly boosted by feature selection, at a cost of information and generalization losses. The results point to the possibility that speech deterioration may affect HC phonation with aging, reducing its difference to PD phonation.
- MeSH
- akustika řeči MeSH
- diferenciální diagnóza MeSH
- fonace fyziologie MeSH
- lidé MeSH
- Parkinsonova nemoc komplikace patofyziologie MeSH
- poruchy řeči etiologie patofyziologie MeSH
- senioři MeSH
- stárnutí fyziologie MeSH
- support vector machine * MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH