Two key cytosolic receptors belonging to the retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) family sense the viral RNA-derived danger signals: RIG-I and melanoma differentiation-associated protein 5 (MDA5). Their activation establishes an antiviral state by downstream signaling that ultimately activates interferon-stimulated genes (ISGs). While in rare cases RIG-I gene loss has been detected in mammalian and avian species, most notably in the chicken, MDA5 pseudogenization has only been detected once in mammals. We have screened over a hundred publicly available avian genome sequences and describe an independent disruption of MDA5 in two unrelated avian lineages, the storks (Ciconiiformes) and the rallids (Gruiformes). The results of our RELAX analysis confirmed the absence of negative selection in the MDA5 pseudogene. In contrast to our prediction, we have shown, using multiple dN/dS-based approaches, that the MDA5 loss does not appear to have resulted in any compensatory evolution in the RIG-I gene, which may partially share its ligand-binding specificity. Together, our results indicate that the MDA5 pseudogenization may have important functional effects on immune responsiveness in these two avian clades.
- MeSH
- DEAD box protein 58 chemie genetika imunologie MeSH
- delece genu * MeSH
- fylogeneze MeSH
- lidé MeSH
- molekulární modely MeSH
- přirozená imunita MeSH
- pseudogeny MeSH
- ptačí proteiny chemie genetika imunologie MeSH
- ptáci klasifikace genetika imunologie MeSH
- sekvence aminokyselin MeSH
- sekvenční seřazení MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Nonsense mutations turn a coding (sense) codon into an in-frame stop codon that is assumed to result in a truncated protein product. Thus, nonsense substitutions are the hallmark of pseudogenes and are used to identify them. Here we show that in-frame stop codons within bacterial protein-coding genes are widespread. Their evolutionary conservation suggests that many of them are not pseudogenes, since they maintain dN/dS values (ratios of substitution rates at non-synonymous and synonymous sites) significantly lower than 1 (this is a signature of purifying selection in protein-coding regions). We also found that double substitutions in codons-where an intermediate step is a nonsense substitution-show a higher rate of evolution compared to null models, indicating that a stop codon was introduced and then changed back to sense via positive selection. This further supports the notion that nonsense substitutions in bacteria are relatively common and do not necessarily cause pseudogenization. In-frame stop codons may be an important mechanism of regulation: Such codons are likely to cause a substantial decrease of protein expression levels.
- MeSH
- Bacteria klasifikace genetika MeSH
- bakteriální proteiny klasifikace genetika MeSH
- bodová mutace MeSH
- fylogeneze MeSH
- modely genetické MeSH
- molekulární evoluce MeSH
- nesmyslný kodon * MeSH
- otevřené čtecí rámce genetika MeSH
- prokaryotické buňky metabolismus MeSH
- pseudogeny genetika MeSH
- sekvence nukleotidů MeSH
- sekvenční homologie nukleových kyselin MeSH
- selekce (genetika) MeSH
- terminační kodon genetika MeSH
- Publikační typ
- časopisecké články MeSH
Toll-like receptors (TLRs) are key sensor molecules in vertebrates triggering initial phases of immune responses to pathogens. The avian TLR family typically consists of ten receptors, each adapted to distinct ligands. To understand the complex evolutionary history of each avian TLR, we analyzed all members of the TLR family in the whole genome assemblies and target sequence data of 63 bird species covering all major avian clades. Our results indicate that gene duplication events most probably occurred in TLR1 before synapsids diversified from sauropsids. Unlike mammals, ssRNA-recognizing TLR7 has duplicated independently in several avian taxa, while flagellin-sensing TLR5 has pseudogenized multiple times in bird phylogeny. Our analysis revealed stronger positive, diversifying selection acting in TLR5 and the three-domain TLRs (TLR10 [TLR1A], TLR1 [TLR1B], TLR2A, TLR2B, TLR4) that face the extracellular space and bind complex ligands than in single-domain TLR15 and endosomal TLRs (TLR3, TLR7, TLR21). In total, 84 out of 306 positively selected sites were predicted to harbor substitutions dramatically changing the amino acid physicochemical properties. Furthermore, 105 positively selected sites were located in the known functionally relevant TLR regions. We found evidence for convergent evolution acting between birds and mammals at 54 of these sites. Our comparative study provides a comprehensive insight into the evolution of avian TLR genetic variability. Besides describing the history of avian TLR gene gain and gene loss, we also identified candidate positions in the receptors that have been likely shaped by direct molecular host-pathogen coevolutionary interactions and most probably play key functional roles in birds.
BACKGROUND: Thinning supplies of natural resources increase attention to sustainable microbial production of bio-based fuels. The strain Clostridium beijerinckii NRRL B-598 is a relatively well-described butanol producer regarding its genotype and phenotype under various conditions. However, a link between these two levels, lying in the description of the gene regulation mechanisms, is missing for this strain, due to the lack of transcriptomic data. RESULTS: In this paper, we present a transcription profile of the strain over the whole fermentation using an RNA-Seq dataset covering six time-points with the current highest dynamic range among solventogenic clostridia. We investigated the accuracy of the genome sequence and particular genome elements, including pseudogenes and prophages. While some pseudogenes were highly expressed, all three identified prophages remained silent. Furthermore, we identified major changes in the transcriptional activity of genes using differential expression analysis between adjacent time-points. We identified functional groups of these significantly regulated genes and together with fermentation and cultivation kinetics captured using liquid chromatography and flow cytometry, we identified basic changes in the metabolism of the strain during fermentation. Interestingly, C. beijerinckii NRRL B-598 demonstrated different behavior in comparison with the closely related strain C. beijerinckii NCIMB 8052 in the latter phases of cultivation. CONCLUSIONS: We provided a complex analysis of the C. beijerinckii NRRL B-598 fermentation profile using several technologies, including RNA-Seq. We described the changes in the global metabolism of the strain and confirmed the uniqueness of its behavior. The whole experiment demonstrated a good reproducibility. Therefore, we will be able to repeat the experiment under selected conditions in order to investigate particular metabolic changes and signaling pathways suitable for following targeted engineering.
- MeSH
- bakteriofágy genetika MeSH
- butanoly metabolismus MeSH
- Clostridium beijerinckii genetika metabolismus virologie MeSH
- DNA virů genetika MeSH
- fermentace MeSH
- genetická transkripce MeSH
- kinetika MeSH
- pseudogeny genetika MeSH
- sekvenční analýza RNA * MeSH
- stanovení celkové genové exprese * MeSH
- Publikační typ
- časopisecké články MeSH
- MeSH
- dějiny 20. století MeSH
- experimentální nádory MeSH
- infekce onkogenními viry genetika přenos MeSH
- kur domácí MeSH
- leukemie * veterinární virologie MeSH
- nádorová transformace buněk MeSH
- nádory dějiny etiologie klasifikace virologie MeSH
- onkogenní viry klasifikace patogenita MeSH
- onkogeny * MeSH
- proviry * enzymologie genetika MeSH
- pseudogeny MeSH
- ptačí sarkom * etiologie virologie MeSH
- ptáci MeSH
- replikace viru MeSH
- retroelementy MeSH
- Retroviridae účinky léků MeSH
- reverzní transkripce MeSH
- reverzní transkriptasa dějiny MeSH
- savci MeSH
- zvířata MeSH
- Check Tag
- dějiny 20. století MeSH
- zvířata MeSH
BACKGROUND: Species within the angiosperm genus Silene contain the largest mitochondrial genomes ever identified. The enormity of these genomes (up to 11 Mb in size) appears to be the result of increased non-coding DNA, which represents >99 % of the genome content. These genomes are also fragmented into dozens of circular-mapping chromosomes, some of which contain no identifiable genes, raising questions about if and how these 'empty' chromosomes are maintained by selection. To assess the possibility that they contain novel and unannotated functional elements, we have performed RNA-seq to analyze the mitochondrial transcriptome of Silene noctiflora. RESULTS: We identified regions of high transcript abundance in almost every chromosome in the mitochondrial genome including those that lack any annotated genes. In some cases, these transcribed regions exhibited higher expression levels than some core mitochondrial protein-coding genes. We also identified RNA editing sites throughout the genome, including 97 sites that were outside of protein-coding gene sequences and found in pseudogenes, introns, UTRs, and transcribed intergenic regions. Unlike in protein-coding sequences, however, most of these RNA editing sites were only edited at intermediate frequencies. Finally, analysis of mitochondrial small RNAs indicated that most were likely degradation products from longer transcripts, but we did identify candidates for functional small RNAs that mapped to intergenic regions and were not associated with longer RNA transcripts. CONCLUSIONS: Our findings demonstrate transcriptional activity in many localized regions within the extensive intergenic sequence content in the S. noctiflora mitochondrial genome, supporting the possibility that the genome contains previously unidentified functional elements. However, transcription by itself is not proof of functional importance, and we discuss evidence that some of the observed transcription and post-transcriptional modifications are non-adaptive. Therefore, further investigations are required to determine whether any of the identified transcribed regions have played a functional role in the proliferation and maintenance of the enormous non-coding regions in Silene mitochondrial genomes.
- MeSH
- editace RNA MeSH
- genom mitochondriální * MeSH
- genom rostlinný * MeSH
- intergenová DNA MeSH
- messenger RNA MeSH
- otevřené čtecí rámce MeSH
- pseudogeny MeSH
- RNA MeSH
- rostlinné geny MeSH
- sekvenční analýza RNA MeSH
- Silene genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
The production of bananas is threatened by rapid spreading of various diseases and adverse environmental conditions. The preservation and characterization of banana diversity is essential for the purposes of crop improvement. The world's largest banana germplasm collection maintained at the Bioversity International Transit Centre (ITC) in Belgium is continuously expanded by new accessions of edible cultivars and wild species. Detailed morphological and molecular characterization of the accessions is necessary for efficient management of the collection and utilization of banana diversity. In this work, nuclear DNA content and genomic distribution of 45S and 5S rDNA were examined in 21 diploid accessions recently added to ITC collection, representing both sections of the genus Musa. 2C DNA content in the section Musa ranged from 1.217 to 1.315 pg. Species belonging to section Callimusa had 2C DNA contents ranging from 1.390 to 1.772 pg. While the number of 45S rDNA loci was conserved in the section Musa, it was highly variable in Callimusa species. 5S rRNA gene clusters were found on two to eight chromosomes per diploid cell. The accessions were genotyped using a set of 19 microsatellite markers to establish their relationships with the remaining accessions held at ITC. Genetic diversity done by SSR genotyping platform was extended by phylogenetic analysis of ITS region. ITS sequence data supported the clustering obtained by SSR analysis for most of the accessions. High level of nucleotide diversity and presence of more than two types of ITS sequences in eight wild diploids pointed to their origin by hybridization of different genotypes. This study significantly expands the number of wild Musa species where nuclear genome size and genomic distribution of rDNA loci is known. SSR genotyping identified Musa species that are closely related to the previously characterized accessions and provided data to aid in their classification. Sequence analysis of ITS region provided further information about evolutionary relationships between individual accessions and suggested that some of analyzed accessions were interspecific hybrids and/or backcross progeny.
- MeSH
- banánovník genetika MeSH
- buněčné jádro genetika MeSH
- chromozomy rostlin genetika MeSH
- cytogenetické vyšetření * MeSH
- délka genomu MeSH
- DNA rostlinná genetika MeSH
- druhová specificita MeSH
- fylogeneze MeSH
- genotyp MeSH
- hybridizace in situ fluorescenční MeSH
- intergenová DNA genetika MeSH
- mikrosatelitní repetice genetika MeSH
- průtoková cytometrie MeSH
- pseudogeny genetika MeSH
- ribozomální DNA genetika MeSH
- RNA ribozomální genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: B chromosomes are supernumerary dispensable parts of the karyotype which appear in some individuals of some populations in some species. Often, they have been considered as 'junk DNA' or genomic parasites without functional genes. SCOPE OF REVIEW: Due to recent advances in sequencing technologies, it became possible to investigate their DNA composition, transcriptional activity and effects on the host transcriptome profile in detail. Here, we review the most recent findings regarding the gene content of B chromosomes and their transcriptional activities and discuss these findings in the context of comparable biological phenomena, like sex chromosomes, aneuploidy and pseudogenes. MAJOR CONCLUSIONS: Recent data suggest that B chromosomes carry transcriptionally active genic sequences which could affect the transcriptome profile of their host genome. GENERAL SIGNIFICANCE: These findings are gradually changing our view that B chromosomes are solely genetically inert selfish elements without any functional genes. This at one side could partly explain the deleterious effects which are associated with their presence. On the other hand it makes B chromosome a nice model for studying regulatory mechanisms of duplicated genes and their evolutionary consequences.
- MeSH
- chromozomy genetika MeSH
- Eukaryota genetika MeSH
- genetická transkripce * MeSH
- genom MeSH
- hybridizace in situ fluorescenční MeSH
- intergenová DNA genetika MeSH
- lidé MeSH
- molekulární evoluce * MeSH
- pseudogeny genetika MeSH
- regulace genové exprese genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Toll-like receptor 5 (TLR5) is a Pattern-recognition receptor responsible for microbial flagellin detection in vertebrates and, hence, recognition of potentially pathogenic bacteria. Herein, we report emergence of TLR5 pseudogene in several phylogenetic lineages of passerine birds (Aves: Passeriformes). Out of 47 species examined in this study 18 possessed a TLR5 pseudogene. Phylogenetic analysis together with the type of mutation responsible for pseudogenization indicate that TLR5 pseudogene emerged at least seven times independently in passerines. Lack of any functional copy of the gene has been verified based on TLR5 mRNA blood expression in four species representing the four main passerine lineages possessing the TLR5 pseudogene. Our results suggest that the non-functional TLR5 variant is fixed in those lineages or, at least, that individuals homozygote in the TLR5 pseudogene are frequent in the investigated species. Further research is needed to assess the impact of the TLR5 loss on immunological performance in birds.
BACKGROUND: Polyploidization is considered one of the main mechanisms of plant genome evolution. The presence of multiple copies of the same gene reduces selection pressure and permits sub-functionalization and neo-functionalization leading to plant diversification, adaptation and speciation. In bread wheat, polyploidization and the prevalence of transposable elements resulted in massive gene duplication and movement. As a result, the number of genes which are non-collinear to genomes of related species seems markedly increased in wheat. RESULTS: We used new-generation sequencing (NGS) to generate sequence of a Mb-sized region from wheat chromosome arm 3DS. Sequence assembly of 24 BAC clones resulted in two scaffolds of 1,264,820 and 333,768 bases. The sequence was annotated and compared to the homoeologous region on wheat chromosome 3B and orthologous loci of Brachypodium distachyon and rice. Among 39 coding sequences in the 3DS scaffolds, 32 have a homoeolog on chromosome 3B. In contrast, only fifteen and fourteen orthologs were identified in the corresponding regions in rice and Brachypodium, respectively. Interestingly, five pseudogenes were identified among the non-collinear coding sequences at the 3B locus, while none was found at the 3DS locus. CONCLUSION: Direct comparison of two Mb-sized regions of the B and D genomes of bread wheat revealed similar rates of non-collinear gene insertion in both genomes with a majority of gene duplications occurring before their divergence. Relatively low proportion of pseudogenes was identified among non-collinear coding sequences. Our data suggest that the pseudogenes did not originate from insertion of non-functional copies, but were formed later during the evolution of hexaploid wheat. Some evidence was found for gene erosion along the B genome locus.
- MeSH
- Brachypodium genetika MeSH
- chromozomy rostlin genetika MeSH
- DNA rostlinná genetika MeSH
- duplikace genu MeSH
- fylogeneze MeSH
- genetické lokusy genetika MeSH
- genom rostlinný genetika MeSH
- inzerční mutageneze MeSH
- kontigové mapování MeSH
- molekulární evoluce * MeSH
- polyploidie MeSH
- pšenice genetika MeSH
- pseudogeny genetika MeSH
- rýže (rod) genetika MeSH
- sekvenční analýza DNA MeSH
- umělé bakteriální chromozomy MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH