SF3B1 mutations are recurrent in chronic lymphocytic leukemia (CLL), particularly enriched in clinically aggressive stereotyped subset #2. To investigate their impact, we conducted RNA-sequencing of 18 SF3B1MUT and 17 SF3B1WT subset #2 cases and identified 80 significant alternative splicing events (ASEs). Notable ASEs concerned exon inclusion in the non-canonical BAF (ncBAF) chromatin remodeling complex subunit, BRD9, and splice variants in eight additional ncBAF complex interactors. Long-read RNA-sequencing confirmed the presence of splice variants, and extended analysis of 139 CLL cases corroborated their association with SF3B1 mutations. Overexpression of SF3B1K700E induced exon inclusion in BRD9, resulting in a novel splice isoform with an alternative C-terminus. Protein interactome analysis of the BRD9 splice isoform revealed augmented ncBAF complex interaction, while exhibiting decreased binding of auxiliary proteins, including SPEN, BRCA2, and CHD9. Additionally, integrative multi-omics analysis identified a ncBAF complex-bound gene quartet on chromosome 1 with higher expression levels and more accessible chromatin in SF3B1MUT CLL. Finally, Cancer Dependency Map analysis and BRD9 inhibition displayed BRD9 dependency and sensitivity in cell lines and primary CLL cells. In conclusion, spliceosome dysregulation caused by SF3B1 mutations leads to multiple ASEs and an altered ncBAF complex interactome, highlighting a novel pathobiological mechanism in SF3B1MUT CLL.
- MeSH
- alternativní sestřih MeSH
- chronická lymfatická leukemie * genetika patologie metabolismus MeSH
- fosfoproteiny * genetika metabolismus MeSH
- lidé MeSH
- mutace * MeSH
- proteiny obsahující bromodoménu MeSH
- restrukturace chromatinu * MeSH
- sestřihové faktory * genetika metabolismus MeSH
- spliceozomy * metabolismus genetika MeSH
- transkripční faktory genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Reactivating p53 and Inducing Tumor Apoptosis (RITA) has been reported to increase the p53 activity and to trigger p53-dependent apoptosis in cancer cells with wild-type p53. Tumor suppressor p53 interacts with nucleolar phosphoproteins nucleophosmin (NPM) and nucleolin (NCL), which have crucial role in many cellular processes. Specific NPM mutations associated with acute myeloid leukemia (AML) cause aberrant localization of NPM and p53 in the cytoplasm with possible impact on the p53 function. We tested an effect of RITA on primary cells, and we found significant RITA-induced changes in NPM and NCL phosphorylation associated with apoptosis in cells of AML patients, but not that of healthy donors. Subsequent screening of several AML cell lines revealed heterogeneous response to RITA, and confirmed an association of the specific phosphorylation with apoptosis. While decreased NCL phosphorylation at Threonines T76 and T84 could be attributed to RITA-induced cell cycle arrest, enhanced NPM phosphorylation at Threonine T199 was not accompanied by the cell cycle changes and it correlated with sensitivity to RITA. Simultaneously, inverse changes occurred at Serine S4 of the NPM. These new findings of RITA mechanism of action could establish the NPM pT199/pS4 ratio as a marker for suitability of RITA treatment of AML cells.
IFI16 (Interferon inducible protein 16) is a DNA sensor responsible for innate immune response stimulation and a direct viral restriction by modulating gene expression and replication. Many IFI16-DNA binding properties were described - length-dependent and sequence-independent binding, oligomerization of IFI16 upon recognition, sliding on the DNA, and preference for supercoiled DNA. However, the question of the role of IFI16-DNA binding in distinct IFI16 functions remains unclear. Here we demonstrate two modes of IFI16 binding to DNA using atomic force microscopy and electrophoretic mobility shift assays. In our study, we show that IFI16 can bind to DNA in the form of globular complexes or oligomers depending on DNA topology and molar ratios. The stability of the complexes is different in higher salt concentrations. In addition, we observed no preferential binding with the HIN-A or HIN-B domains to supercoiled DNA, revealing the importance of the whole protein for this specificity. These results provide more profound insight into IFI16-DNA interactions and may be important in answering the question of self- and non-self-DNA binding by the IFI16 protein and potentially could shed light on the role of DNA binding in distinct IFI16 functions.
Linker for activation of T cells (LAT) plays a key role in T-cell antigenic signaling in mammals. Accordingly, LAT orthologues were identified in the majority of vertebrates. However, LAT orthologues were not identified in most birds. In this study, we show that LAT gene is present in genomes of multiple extant birds. It was not properly assembled previously because of its GC-rich content. LAT expression is enriched in lymphoid organs in chicken. The analysis of the coding sequences revealed a strong conservation of key signaling motifs in LAT between chicken and human. Overall, our data indicate that mammalian and avian LAT genes are functional homologues with a common role in T-cell signaling.
- MeSH
- adaptorové proteiny signální transdukční * genetika MeSH
- fosfoproteiny metabolismus MeSH
- genom MeSH
- kur domácí genetika metabolismus MeSH
- lidé MeSH
- membránové proteiny * genetika MeSH
- savci genetika MeSH
- T-lymfocyty metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
RNA splicing, the process of intron removal from pre-mRNA, is essential for the regulation of gene expression. It is controlled by the spliceosome, a megadalton RNA-protein complex that assembles de novo on each pre-mRNA intron through an ordered assembly of intermediate complexes1,2. Spliceosome activation is a major control step that requires substantial protein and RNA rearrangements leading to a catalytically active complex1-5. Splicing factor 3B subunit 1 (SF3B1) protein-a subunit of the U2 small nuclear ribonucleoprotein6-is phosphorylated during spliceosome activation7-10, but the kinase that is responsible has not been identified. Here we show that cyclin-dependent kinase 11 (CDK11) associates with SF3B1 and phosphorylates threonine residues at its N terminus during spliceosome activation. The phosphorylation is important for the association between SF3B1 and U5 and U6 snRNAs in the activated spliceosome, termed the Bact complex, and the phosphorylation can be blocked by OTS964, a potent and selective inhibitor of CDK11. Inhibition of CDK11 prevents spliceosomal transition from the precatalytic complex B to the activated complex Bact and leads to widespread intron retention and accumulation of non-functional spliceosomes on pre-mRNAs and chromatin. We demonstrate a central role of CDK11 in spliceosome assembly and splicing regulation and characterize OTS964 as a highly selective CDK11 inhibitor that suppresses spliceosome activation and splicing.
- MeSH
- aktivace enzymů účinky léků MeSH
- chinolony farmakologie MeSH
- chromatin metabolismus MeSH
- cyklin-dependentní kinasy * antagonisté a inhibitory metabolismus MeSH
- fosfoproteiny * chemie metabolismus MeSH
- fosforylace MeSH
- malý jaderný ribonukleoprotein U2 * chemie metabolismus MeSH
- prekurzory RNA * genetika metabolismus MeSH
- sestřih RNA * účinky léků MeSH
- spliceozomy * účinky léků metabolismus MeSH
- threonin metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
Adenylosuccinate lyase (ADSL) functions in de novo purine synthesis (DNPS) and the purine nucleotide cycle. ADSL deficiency (ADSLD) causes numerous neurodevelopmental pathologies, including microcephaly and autism spectrum disorder. ADSLD patients have normal serum purine nucleotide levels but exhibit accumulation of dephosphorylated ADSL substrates, S-Ado, and SAICAr, the latter being implicated in neurotoxic effects through unknown mechanisms. We examined the phenotypic effects of ADSL depletion in human cells and their relation to phenotypic outcomes. Using specific interventions to compensate for reduced purine levels or modulate SAICAr accumulation, we found that diminished AMP levels resulted in increased DNA damage signaling and cell cycle delays, while primary ciliogenesis was impaired specifically by loss of ADSL or administration of SAICAr. ADSL-deficient chicken and zebrafish embryos displayed impaired neurogenesis and microcephaly. Neuroprogenitor attrition in zebrafish embryos was rescued by pharmacological inhibition of DNPS, but not increased nucleotide concentration. Zebrafish also displayed phenotypes commonly linked to ciliopathies. Our results suggest that both reduced purine levels and impaired DNPS contribute to neurodevelopmental pathology in ADSLD and that defective ciliogenesis may influence the ADSLD phenotypic spectrum.
- MeSH
- adenylsukcinátlyasa nedostatek metabolismus MeSH
- aminoimidazolkarboxamid analogy a deriváty metabolismus MeSH
- autistická porucha metabolismus MeSH
- buněčné linie MeSH
- buněčný cyklus MeSH
- ciliopatie metabolismus MeSH
- dánio pruhované metabolismus MeSH
- fenotyp MeSH
- fosfoproteiny metabolismus MeSH
- kur domácí metabolismus MeSH
- lidé MeSH
- mikrocefalie metabolismus MeSH
- neurogeneze * MeSH
- poruchy autistického spektra metabolismus MeSH
- poruchy metabolismu purinů a pyrimidinů metabolismus MeSH
- poškození DNA MeSH
- proteiny asociované s mikrotubuly metabolismus MeSH
- proteiny buněčného cyklu metabolismus MeSH
- puriny metabolismus MeSH
- ribonukleotidy metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Intramural MeSH
To date, the effects of specific modification types and sites on protein lifetime have not been systematically illustrated. Here, we describe a proteomic method, DeltaSILAC, to quantitatively assess the impact of site-specific phosphorylation on the turnover of thousands of proteins in live cells. Based on the accurate and reproducible mass spectrometry-based method, a pulse labeling approach using stable isotope-labeled amino acids in cells (pSILAC), phosphoproteomics, and a unique peptide-level matching strategy, our DeltaSILAC profiling revealed a global, unexpected delaying effect of many phosphosites on protein turnover. We further found that phosphorylated sites accelerating protein turnover are functionally selected for cell fitness, enriched in Cyclin-dependent kinase substrates, and evolutionarily conserved, whereas the glutamic acids surrounding phosphosites significantly delay protein turnover. Our method represents a generalizable approach and provides a rich resource for prioritizing the effects of phosphorylation sites on protein lifetime in the context of cell signaling and disease biology.
- MeSH
- buněčný cyklus fyziologie MeSH
- cyklin-dependentní kinasy genetika metabolismus MeSH
- fosfoproteiny chemie metabolismus MeSH
- fosforylace MeSH
- glutamáty metabolismus MeSH
- hmotnostní spektrometrie metody MeSH
- izotopové značení metody MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- peptidy metabolismus MeSH
- peroxiredoxin VI chemie metabolismus MeSH
- proteolýza * MeSH
- proteom genetika metabolismus MeSH
- proteomika metody MeSH
- sekvence aminokyselin MeSH
- sestřihové faktory chemie metabolismus MeSH
- signální transdukce genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Angiosperm mature pollen represents a quiescent stage with a desiccated cytoplasm surrounded by a tough cell wall, which is resistant to the suboptimal environmental conditions and carries the genetic information in an intact stage to the female gametophyte. Post pollination, pollen grains are rehydrated, activated, and a rapid pollen tube growth starts, which is accompanied by a notable metabolic activity, synthesis of novel proteins, and a mutual communication with female reproductive tissues. Several angiosperm species (Arabidopsis thaliana, tobacco, maize, and kiwifruit) were subjected to phosphoproteomic studies of their male gametophyte developmental stages, mostly mature pollen grains. The aim of this review is to compare the available phosphoproteomic studies and to highlight the common phosphoproteins and regulatory trends in the studied species. Moreover, the pollen phosphoproteome was compared with root hair phosphoproteome to pinpoint the common proteins taking part in their tip growth, which share the same cellular mechanisms.
Streptococcus pneumoniae is an opportunistic human pathogen that encodes a single eukaryotic-type Ser/Thr protein kinase StkP and its functional counterpart, the protein phosphatase PhpP. These signaling enzymes play critical roles in coordinating cell division and growth in pneumococci. In this study, we determined the proteome and phosphoproteome profiles of relevant mutants. Comparison of those with the wild-type provided a representative dataset of novel phosphoacceptor sites and StkP-dependent substrates. StkP phosphorylates key proteins involved in cell division and cell wall biosynthesis in both the unencapsulated laboratory strain Rx1 and the encapsulated virulent strain D39. Furthermore, we show that StkP plays an important role in triggering an adaptive response induced by a cell wall-directed antibiotic. Phosphorylation of the sensor histidine kinase WalK and downregulation of proteins of the WalRK core regulon suggest crosstalk between StkP and the WalRK two-component system. Analysis of proteomic profiles led to the identification of gene clusters regulated by catabolite control mechanisms, indicating a tight coupling of carbon metabolism and cell wall homeostasis. The imbalance of steady-state protein phosphorylation in the mutants as well as after antibiotic treatment is accompanied by an accumulation of the global Spx regulator, indicating a Spx-mediated envelope stress response. In summary, StkP relays the perceived signal of cell wall status to key cell division and regulatory proteins, controlling the cell cycle and cell wall homeostasis.
- MeSH
- antibakteriální látky farmakologie MeSH
- bakteriální proteiny metabolismus MeSH
- buněčná stěna účinky léků fyziologie MeSH
- fosfoproteiny metabolismus MeSH
- fosforylace MeSH
- fyziologický stres * MeSH
- proteinkinasy metabolismus MeSH
- proteom MeSH
- Streptococcus pneumoniae účinky léků fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- dataset MeSH
- práce podpořená grantem MeSH
Nucleolin is a multifunctional RNA Binding Protein (RBP) with diverse subcellular localizations, including the nucleolus in all eukaryotic cells, the plasma membrane in tumor cells, and the axon in neurons. Here we show that the glycine arginine rich (GAR) domain of nucleolin drives subcellular localization via protein-protein interactions with a kinesin light chain. In addition, GAR sequences mediate plasma membrane interactions of nucleolin. Both these modalities are in addition to the already reported involvement of the GAR domain in liquid-liquid phase separation in the nucleolus. Nucleolin transport to axons requires the GAR domain, and heterozygous GAR deletion mice reveal reduced axonal localization of nucleolin cargo mRNAs and enhanced sensory neuron growth. Thus, the GAR domain governs axonal transport of a growth controlling RNA-RBP complex in neurons, and is a versatile localization determinant for different subcellular compartments. Localization determination by GAR domains may explain why GAR mutants in diverse RBPs are associated with neurodegenerative disease.
- MeSH
- axonální transport genetika MeSH
- buněčné jadérko metabolismus ultrastruktura MeSH
- exprese genu MeSH
- fosfoproteiny chemie genetika metabolismus MeSH
- HEK293 buňky MeSH
- HeLa buňky MeSH
- kineziny genetika metabolismus MeSH
- lidé MeSH
- messenger RNA genetika metabolismus MeSH
- mutace MeSH
- myši inbrední BALB C MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nervus ischiadicus cytologie metabolismus MeSH
- neurony cytologie metabolismus MeSH
- primární buněčná kultura MeSH
- proteinové domény MeSH
- proteiny vázající RNA chemie genetika metabolismus MeSH
- sekvence aminokyselin MeSH
- spinální ganglia cytologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH