Testis development and ultrastructure of spermatogenic cells and spermatozoa of burbot Lota lota, a commercially important cold freshwater fish, were studied by light and transmission electron microscopy. Spermatogonia, spermatocytes, spermatids, and spermatozoa are distributed along the seminiferous tubules. Electron-dense bodies appear in germ cells from primary spermatogonia to secondary spermatocytes. We identified three distinct stages of spermatid cell differentiation based on chromatin condensation, development of the flagellum, formation of a nuclear fossa, and elimination of excess cytoplasm. Spermatozoa were anacrosomal and characterized by location of the centrioles outside the nuclear fossa and incomplete perpendicular arrangement of the centrioles. The sperm flagellum displayed an axoneme with nine doublets of peripheral microtubules and two central microtubules. These results provide valuable information for burbot taxonomy and may clarify the process of spermatogenesis for this species.
- MeSH
- kultivované buňky MeSH
- ryby metabolismus MeSH
- Sertoliho buňky ultrastruktura MeSH
- spermatidy ultrastruktura MeSH
- spermatogeneze * MeSH
- spermatogonie ultrastruktura MeSH
- spermie ultrastruktura MeSH
- testis cytologie ultrastruktura MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Successful derivation and cultivation of primordial germ cells (PGCs) opened the way to efficient transgenesis and genome editing in the chicken. Furthermore, implantation of male PGCs from non-chicken galliform species into the chicken embryos resulted in cross-species germline chimeras and viable offspring. We have recently improved the PGC technology by demonstrating that chicken male PGCs transplanted into the testes of adult cockerel recipients mature into functional sperms. However, the availability of this orthotopic transplantation for cross-species transfer remains to be explored. Here we tested the capacity of genetically distant male PGCs to mature in the microenvironment of adult testes. We derived PGCs from the Chinese black-bone Silkie and transplanted them into infertile White Leghorn cockerels. Within 15-18 weeks after transplantation, we observed restoration of spermatogenesis in recipient cockerels and production of healthy progeny derived from the transplanted PGCs. Our findings also indicate the possibility of cross-species orthotopic transplantation of PGCs. Thus, our results might contribute to the preservation of endangered avian species and maintaining the genetic variability of the domestic chicken.
- MeSH
- chiméra genetika MeSH
- chov metody MeSH
- křížení genetické MeSH
- kultivované buňky MeSH
- kur domácí * klasifikace genetika MeSH
- kuřecí embryo MeSH
- ohrožené druhy MeSH
- spermatogeneze fyziologie MeSH
- spermie cytologie transplantace MeSH
- testis cytologie MeSH
- transplantace heterologní veterinární MeSH
- zachování plodnosti metody veterinární MeSH
- zachování přírodních zdrojů * metody MeSH
- zárodečné buňky transplantace MeSH
- zvířata MeSH
- Check Tag
- kuřecí embryo MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Phosphorylation, or dephosphorylation, is one of the most frequent post-translational modifications regulating protein-protein activity in eukaryotic cells. Whereas mature spermatozoa (as specialized cells) are transcriptionally inactive and do not synthesize new proteins, phosphorylation of sperm proteins is very important for the regulation of the sperm function. Although the post-testicular maturation of spermatozoa is a process common to all mammals, comparative studies showed significant differences in sperm surface proteins and the mechanisms of protein modification during the epididymal maturation. In our study, the evaluation of tyrosine phosphorylation, represented by the fluorescent patterns of used anti-phosphotyrosine antibodies (P-Tyr-01 and 4G10), in spermatozoa isolated from different regions of the epididymis - caput, corpus and cauda - was performed. Although in general both antibodies detected almost the same reaction patterns, we observed some dissimilarity associated with the binding specificity of the antibodies and also the segment-dependent manner of phosphorylated protein localization. These data were filled up by immunohistochemical analysis of testes and epididymides cryosections. Additionally, our phosphoproteomic study focused on evaluation of the changes in the pattern of tyrosine-phosphorylated proteins during the post-testicular maturation of bull spermatozoa (PY20 antibody). To summarize the results, an increasing trend of tyrosine phosphorylation of proteins during the maturation of bull sperm in the epididymis was consistently observed in all the methods/experiments.
- MeSH
- epididymis cytologie MeSH
- fluorescence MeSH
- fosforylace MeSH
- fosfotyrosin metabolismus MeSH
- proteiny metabolismus MeSH
- skot MeSH
- spermie cytologie metabolismus MeSH
- testis cytologie MeSH
- zrání spermie * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The ongoing progress in primordial germ cell derivation and cultivation is opening new ways in reproductive biotechnology. This study tested whether functional sperm cells can be matured from genetically manipulated primordial germ cells after transplantation in adult testes and used to restore fertility. We show that spermatogenesis can be restored after mCherry-expressing or GFP-expressing primordial germ cells are transplantated into the testes of sterilized G0 roosters and that mCherry-positive or GFP-positive non-chimeric transgenic G1 offspring can be efficiently produced. Compared with the existing approaches to primordial germ cell replacement, this new technique eliminates the germ line chimerism of G0 roosters and is, therefore, faster, more efficient and requires fewer animals. Furthermore, this is the only animal model, where the fate of primordial germ cells in infertile recipients can be studied.
- MeSH
- fenotyp MeSH
- fertilita * MeSH
- kur domácí genetika fyziologie MeSH
- spermatogeneze genetika MeSH
- spermie cytologie MeSH
- technika přenosu genů * MeSH
- testis cytologie fyziologie MeSH
- transdukce genetická MeSH
- transplantace buněk * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The role of Ca2+ in sturgeon sperm maturation and motility was investigated. Sperm from mature male sterlets (Acipenser ruthenus) were collected from the Wolffian duct and testis 24h after hormone induction. Testicular spermatozoa (TS) were incubated in Wolffian duct seminal fluid (WDSF) for 5min at 20°C and were designated 'TS after IVM' (TSM). Sperm motility was activated in media with different ion compositions, with motility parameters analysed from standard video microscopy records. To investigate the role of calcium transport in the IVM process, IVM was performed (5min at 20°C) in the presence of 2mM EGTA, 100µM Verapamil or 100µM Tetracaine. No motility was observed in the case of TS (10mM Tris, 25mM NaCl, 50mM Sucr with or without the addition of 2mM EGTA). Both incubation of TS in WDSF and supplementation of the activation medium with Ca2+ led to sperm motility. The minimal Ca2+ concentration required for motility activation of Wolffian duct spermatozoa, TS and TSM was determined (1-2nM for Wolffian duct spermatozoa and TSM; approximately 0.6mM for TS). Motility was obtained after the addition of verapamil to the incubation medium during IVM, whereas the addition of EGTA completely suppressed motility, implying Ca2+ involvement in sturgeon sperm maturation. Further studies into the roles of Ca2+ transport in sturgeon sperm maturation and motility are required.
- MeSH
- blokátory kalciových kanálů farmakologie MeSH
- iontový transport MeSH
- kultivační média MeSH
- motilita spermií účinky léků fyziologie MeSH
- ryby metabolismus MeSH
- sperma metabolismus MeSH
- spermie účinky léků metabolismus MeSH
- techniky in vitro MeSH
- testis cytologie MeSH
- vápník metabolismus farmakologie MeSH
- verapamil farmakologie MeSH
- Wolffovy vývody metabolismus MeSH
- zrání spermie účinky léků fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Calcium plays a variety of vital regulatory functions in many physiological and biochemical events in the cell. The aim of this study was to describe the ultrastructural distribution of calcium during different developmental stages of spermatogenesis in a model organism, the zebrafish (Danio rerio), using a combined oxalate-pyroantimonate technique. Samples were treated by potassium oxalate and potassium pyroantimonate during two fixation stages and examined using transmission electron microscopy to detect electron dense intracellular calcium. The subcellular distribution of intracellular calcium was characterized in spermatogonium, spermatocyte, spermatid, and spermatozoon stages. The area which is covered by intracellular calcium in different stages was quantified and compared using software. Isolated calcium deposits were mainly detectable in the cytoplasm and the nucleus of the spermatogonium and spermatocyte. In the spermatid, calcium was partially localized in the cytoplasm as isolated deposits. However, most calcium was transformed from isolated deposits into an unbound pool (free calcium) within the nucleus of the spermatid and the spermatozoon. Interestingly, in the spermatozoon, calcium was mainly localized in a form of an unbound pool which was detectable as an electron-dense mass within the nucleus. Also, sporadic calcium deposits were scattered in the midpiece and flagellum. The proportional area which was covered by intracellular calcium increased significantly from early to late stages of spermatogenesis. The extent of the area which was covered by intracellular calcium in the spermatozoon was the highest compared to earlier stages. Calcium deposits were also observed in the somatic cells (Sertoli, myoid, Leydig) of zebrafish testis. The notable changes in the distribution of intracellular calcium of germ cells during different developmental stages of zebrafish spermatogenesis suggest its different homeostasis and physiological functions during the process of male gamete development.
- MeSH
- buněčné jádro ultrastruktura MeSH
- dánio pruhované metabolismus MeSH
- spermatidy cytologie ultrastruktura MeSH
- spermatogeneze * MeSH
- subcelulární frakce metabolismus ultrastruktura MeSH
- testis cytologie ultrastruktura MeSH
- vápník metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
In sturgeon, the acquisition of the potential for motility activation called spermatozoon maturation takes place outside testes. This process can be accomplished in vitro by pre-incubation of immature testicular spermatozoa in seminal fluid collected from fully mature Wolffian duct sperm. Addition of trypsin inhibitor to the pre-incubation medium disrupts spermatozoon maturation. There are no available data for the role of proteolysis regulators in fish spermatozoon maturation, while their role is recognized in mammalian sperm maturation. The present study evaluated the involvement of seminal fluid proteases and anti-proteolytic activity in the sterlet spermatozoon maturation process. Casein and gelatin zymography and quantification of amidase and anti-proteolytic activity were conducted in sturgeon seminal fluid from Wolffian duct sperm and seminal fluid from testicular sperm, along with spermatozoon extracts from Wolffian duct spermatozoa, testicular spermatozoa, and testicular spermatozoa after in vitro maturation. We did not find significant differences in proteolytic profiles of seminal fluids from Wolffian duct sperm and ones from testicular sperm. Zymography revealed differences in spermatozoon extracts: Wolffian duct spermatozoon extracts were characterized by the presence of a broad proteolytic band ranging from 48 to 41 kDa, while testicular spermatozoon extracts did not show such activity until after in vitro maturation. The differences in amidase activity coincided with these results. It may not be the levels of proteolytic and anti-proteolytic activity per se, but the alterations in their interactions triggering a cascade of signaling events, that is crucial to the maturation process.
- MeSH
- amidohydrolasy metabolismus MeSH
- motilita spermií MeSH
- proteolýza MeSH
- ryby fyziologie MeSH
- spermie fyziologie MeSH
- testis cytologie MeSH
- Wolffovy vývody cytologie MeSH
- zrání spermie * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
In vitro maturation (IVM) and in vitro fertilization (IVF) technologies are facing with growing demands of older women to conceive. Although ovarian stem cells (OSCs) of older women are capable of producing in vitro fresh oocyte-like cells (OLCs), such cells cannot respond to IVM and IVF due to the lack of granulosa cells required for their maturation. Follicular renewal is also dependent on support of circulating blood mononuclear cells. They induce intermediary stages of meiosis (metaphase I chromosomal duplication and crossover, anaphase, telophase, and cytokinesis) in newly emerging ovarian germ cells, as for the first time demonstrated here, induce formation of granulosa cells, and stimulate follicular growth and development. A pretreatment of OSC culture with mononuclear cells collected from blood of a young healthy fertile woman may cause differentiation of bipotential OSCs into both developing germ and granulosa cells. A small blood volume replacement may enable treatment of ovarian infertility in vivo. The transferred mononuclear cells may temporarily rejuvenate virtually all tissues, including improvement of the function of endocrine tissues. Formation of new follicles and their development may be sufficient for IVM and IVF. The novel proposed in vitro approaches may be used as a second possibility. Infertility of human males affects almost a half of the infertility cases worldwide. Small blood volume replacement from young healthy fertile men may also be easy approach for the improvement of sperm quality in older or other affected men. In addition, body rejuvenation by small blood volume replacement from young healthy individuals of the same sex could represent a decline of in vitro methodology in favor of in vivo treatment for human functional diseases. Here we propose for the first time that blood mononuclear cells are essential for rejuvenation of those tissues, where immune system components participate in an appropriate division and differentiation of tissue stem cells. If needed, small blood volume replacement from distinct young healthy individuals could be utilized in six month intervals for repair of young altered or aged reproductive and other tissue functions. Systemic and local use of honey bee propolis tincture is an alternative option for functional rejuvenation of some tissues.
- MeSH
- fertilizace in vitro metody trendy MeSH
- kmenové buňky cytologie MeSH
- lidé MeSH
- mužská infertilita terapie MeSH
- ovarium cytologie MeSH
- primární ovariální insuficience komplikace MeSH
- testis cytologie MeSH
- zárodečné buňky cytologie MeSH
- ženská infertilita terapie MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- úvodní články MeSH
- úvodníky MeSH
1. The aim of this study was to evaluate the ability of frozen-thawed testicular cells transplanted into infertile cocks to restore spermatogenesis and to compare two cryoprotectants (CPA) (dimethylsulfoxide (DMSO) and Biofreeze). 2. A total of 24 infertile White Leghorn (WL) cocks were transplanted with cryopreserved testicular cells from fertile adult donor cocks. Both genetically close and phylogenetically distant chicken breeds were used as donor cocks. 3. Twelve out of 24 WL recipient cocks with cryopreserved testicular cells restored spermatogenesis within 2 months after the transplantation. Six out of 12 recipient cocks with restored spermatogenesis successfully produced progeny expressing the donor phenotype. 4. There was no difference between the CPA in cell viability after thawing or in the number of offspring produced from cryopreserved testicular tissue. 5. The present work represents the first report of production of a donor-derived healthy progeny following frozen-thawed testicular cell transplantation in adult birds. The described results may contribute to preservation of endangered avian species and to maintaining their genetic variability.
- MeSH
- kryoprezervace veterinární MeSH
- kur domácí MeSH
- mužská infertilita chirurgie veterinární MeSH
- nemoci drůbeže chirurgie MeSH
- spermatogeneze MeSH
- testis cytologie transplantace MeSH
- umělá inseminace veterinární MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The karyotypic evolution in the family Bovidae is based on centric fusions of ancestral acrocentric chromosomes. Here, the frequency and distribution of meiotic recombination was analyzed in pachytene spermatocytes from Bos taurus (2n = 60) and 3 wildebeest species (Connochaetes gnou, C. taurinus taurinus and C. t. albojubatus) (2n = 58) using immunofluorescence and fluorescence in situ hybridization. Significant differences in mean numbers of recombination events per cell were observed between B. taurus and members of the genus Connochaetes (47.2 vs. 43.7, p < 0.001). The number of MLH1 foci was significantly correlated with the length of the autosomal synaptonemal complexes. The average interfocus distance was influenced by interference. The male recombination maps of bovine chromosomes 2 and 25 and of their fused homologues in wildebeests were constructed. A significant reduction of recombination in the fused chromosome BTA25 was observed in wildebeests (p = 0.005). This was probably caused by interference acting across the centromere, which was significantly stronger than the intra-arm interference. This comparative meiotic study showed significant differences among the species from the family Bovidae with the same fundamental number of autosomal arms (FNa = 29) which differ by a single centric fusion.
- MeSH
- centromera genetika MeSH
- hybridizace in situ fluorescenční MeSH
- meióza * MeSH
- pachytenní stadium MeSH
- pohlavní chromozomy genetika MeSH
- přežvýkavci genetika MeSH
- proteiny buněčného cyklu genetika MeSH
- rekombinace genetická * MeSH
- savčí chromozomy genetika MeSH
- skot genetika MeSH
- spermatocyty cytologie MeSH
- synaptonemální komplex genetika MeSH
- testis cytologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- skot genetika MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH