18288791 OR Poly(L-lysine)-modified iron oxide nanoparticles for stem cell labeling Dotaz Zobrazit nápovědu
INTRODUCTION: Rat mesenchymal stem cells (rMSCs) labeled with 1) poly-l-lysine-coated superparamagnetic iron oxide nanoparticles or 2) silica-coated cobalt-zinc-iron nanoparticles were implanted into the left brain hemisphere of rats, to assess their effects on the levels of oxidative damage to biological macromolecules in brain tissue. METHODS: Controls were implanted with unlabeled rMSCs. Animals were sacrificed 24 hours or 4 weeks after the treatment, and the implantation site along with the surrounding tissue was isolated from the brain. At the same intervals, parallel groups of animals were scanned in vivo by magnetic resonance imaging (MRI). The comet assay with enzymes of excision DNA repair (endonuclease III and formamidopyrimidine-DNA glycosylase) was used to analyze breaks and oxidative damage to DNA in the brain tissue. Oxidative damage to proteins and lipids was determined by measuring the levels of carbonyl groups and 15-F2t-isoprostane (enzyme-linked immunosorbent assay). MRI displayed implants of labeled cells as extensive hypointense areas in the brain tissue. In histological sections, the expression of glial fibrillary acidic protein and CD68 was analyzed to detect astrogliosis and inflammatory response. RESULTS: Both contrast labels caused a similar response in the T2-weighted magnetic resonance (MR) image and the signal was clearly visible within 4 weeks after implantation of rMSCs. No increase of oxidative damage to DNA, lipids, or proteins over the control values was detected in any sample of brain tissue from the treated animals. Also, immunohistochemistry did not indicate any serious tissue impairment around the graft. CONCLUSION: Both tested types of nanoparticles appear to be prospective and safe labels for tracking the transplanted cells by MR.
- MeSH
- ELISA MeSH
- isoprostany analýza metabolismus MeSH
- kobalt chemie MeSH
- kovové nanočástice aplikace a dávkování chemie toxicita MeSH
- magnetická rezonanční tomografie metody MeSH
- mezenchymální kmenové buňky chemie MeSH
- mozek diagnostické zobrazování účinky léků metabolismus MeSH
- oxid křemičitý chemie MeSH
- potkani inbrední LEW MeSH
- prospektivní studie MeSH
- tkáňové extrakty MeSH
- transplantace mezenchymálních kmenových buněk * MeSH
- železité sloučeniny chemie MeSH
- železo chemie MeSH
- zinek chemie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Magnetic resonance (MR) imaging is suitable for noninvasive long-term tracking. We labeled human induced pluripotent stem cell-derived neural precursors (iPSC-NPs) with two types of iron-based nanoparticles, silica-coated cobalt zinc ferrite nanoparticles (CZF) and poly-l-lysine-coated iron oxide superparamagnetic nanoparticles (PLL-coated γ-Fe2O3) and studied their effect on proliferation and neuronal differentiation. MATERIALS AND METHODS: We investigated the effect of these two contrast agents on neural precursor cell proliferation and differentiation capability. We further defined the intracellular localization and labeling efficiency and analyzed labeled cells by MR. RESULTS: Cell proliferation was not affected by PLL-coated γ-Fe2O3 but was slowed down in cells labeled with CZF. Labeling efficiency, iron content and relaxation rates measured by MR were lower in cells labeled with CZF when compared to PLL-coated γ-Fe2O3. Cytoplasmic localization of both types of nanoparticles was confirmed by transmission electron microscopy. Flow cytometry and immunocytochemical analysis of specific markers expressed during neuronal differentiation did not show any significant differences between unlabeled cells or cells labeled with both magnetic nanoparticles. CONCLUSION: Our results show that cells labeled with PLL-coated γ-Fe2O3 are suitable for MR detection, did not affect the differentiation potential of iPSC-NPs and are suitable for in vivo cell therapies in experimental models of central nervous system disorders.
- MeSH
- buněčná diferenciace * MeSH
- fibroblasty cytologie MeSH
- imunoenzymatické techniky MeSH
- indukované pluripotentní kmenové buňky cytologie MeSH
- kontrastní látky chemie MeSH
- kultivované buňky MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- lidé MeSH
- lysin chemie MeSH
- magnetická rezonanční tomografie metody MeSH
- magnetické nanočástice chemie MeSH
- neurony cytologie MeSH
- plíce cytologie MeSH
- plod cytologie MeSH
- proliferace buněk MeSH
- průtoková cytometrie MeSH
- transmisní elektronová mikroskopie MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH