PDBsum is a web server providing structural information on the entries in the Protein Data Bank (PDB). The analyses are primarily image-based and include protein secondary structure, protein-ligand and protein-DNA interactions, PROCHECK analyses of structural quality, and many others. The 3D structures can be viewed interactively in RasMol, PyMOL, and a JavaScript viewer called 3Dmol.js. Users can upload their own PDB files and obtain a set of password-protected PDBsum analyses for each. The server is freely accessible to all at: http://www.ebi.ac.uk/pdbsum.
The Protein Data Bank in Europe (PDBe), a founding member of the Worldwide Protein Data Bank (wwPDB), actively participates in the deposition, curation, validation, archiving and dissemination of macromolecular structure data. PDBe supports diverse research communities in their use of macromolecular structures by enriching the PDB data and by providing advanced tools and services for effective data access, visualization and analysis. This paper details the enrichment of data at PDBe, including mapping of RNA structures to Rfam, and identification of molecules that act as cofactors. PDBe has developed an advanced search facility with ∼100 data categories and sequence searches. New features have been included in the LiteMol viewer at PDBe, with updated visualization of carbohydrates and nucleic acids. Small molecules are now mapped more extensively to external databases and their visual representation has been enhanced. These advances help users to more easily find and interpret macromolecular structure data in order to solve scientific problems.
- MeSH
- databáze proteinů * MeSH
- konformace proteinů MeSH
- shluková analýza MeSH
- software * MeSH
- správnost dat MeSH
- uživatelské rozhraní počítače MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
A single protein structure is rarely sufficient to capture the conformational variability of a protein. Both bound and unbound (holo and apo) forms of a protein are essential for understanding its geometry and making meaningful comparisons. Nevertheless, docking or drug design studies often still consider only single protein structures in their holo form, which are for the most part rigid. With the recent explosion in the field of structural biology, large, curated datasets are urgently needed. Here, we use a previously developed application (AHoJ) to perform a comprehensive search for apo-holo pairs for 468,293 biologically relevant protein-ligand interactions across 27,983 proteins. In each search, the binding pocket is captured and mapped across existing structures within the same UniProt, and the mapped pockets are annotated as apo or holo, based on the presence or absence of ligands. We assemble the results into a database, AHoJ-DB (www.apoholo.cz/db), that captures the variability of proteins with identical sequences, thereby exposing the agents responsible for the observed differences in geometry. We report several metrics for each annotated pocket, and we also include binding pockets that form at the interface of multiple chains. Analysis of the database shows that about 24% of the binding sites occur at the interface of two or more chains and that less than 50% of the total binding sites processed have an apo form in the PDB. These results can be used to train and evaluate predictors, discover potentially druggable proteins, and reveal protein- and ligand-specific relationships that were previously obscured by intermittent or partial data. Availability: www.apoholo.cz/db.
- MeSH
- apoproteiny chemie metabolismus MeSH
- databáze proteinů * MeSH
- konformace proteinů * MeSH
- lidé MeSH
- ligandy MeSH
- molekulární modely MeSH
- proteiny * chemie metabolismus MeSH
- vazba proteinů * MeSH
- vazebná místa MeSH
- výpočetní biologie metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
In this article, we present a method for the enhanced molecular dynamics simulation of protein and DNA systems called potential of mean force (PMF)-enriched sampling. The method uses partitions derived from the potentials of mean force, which we determined from DNA and protein structures in the Protein Data Bank (PDB). We define a partition function from a set of PDB-derived PMFs, which efficiently compensates for the error introduced by the assumption of a homogeneous partition function from the PDB datasets. The bias based on the PDB-derived partitions is added in the form of a hybrid Hamiltonian using a renormalization method, which adds the PMF-enriched gradient to the system depending on a linear weighting factor and the underlying force field. We validated the method using simulations of dialanine, the folding of TrpCage, and the conformational sampling of the Dickerson⁻Drew DNA dodecamer. Our results show the potential for the PMF-enriched simulation technique to enrich the conformational space of biomolecules along their order parameters, while we also observe a considerable speed increase in the sampling by factors ranging from 13.1 to 82. The novel method can effectively be combined with enhanced sampling or coarse-graining methods to enrich conformational sampling with a partition derived from the PDB.
Well defined biomacromolecular patterns such as binding sites, catalytic sites, specific protein or nucleic acid sequences, etc. precisely modulate many important biological phenomena. We introduce PatternQuery, a web-based application designed for detection and fast extraction of such patterns. The application uses a unique query language with Python-like syntax to define the patterns that will be extracted from datasets provided by the user, or from the entire Protein Data Bank (PDB). Moreover, the database-wide search can be restricted using a variety of criteria, such as PDB ID, resolution, and organism of origin, to provide only relevant data. The extraction generally takes a few seconds for several hundreds of entries, up to approximately one hour for the whole PDB. The detected patterns are made available for download to enable further processing, as well as presented in a clear tabular and graphical form directly in the browser. The unique design of the language and the provided service could pave the way towards novel PDB-wide analyses, which were either difficult or unfeasible in the past. The application is available free of charge at http://ncbr.muni.cz/PatternQuery.
Burchova kolposuspenze, která byla velmi oblíbenou mezi klasickými otevřenými chirurgickýmitechnikami pro řešení stresové inkontinence, byla v posledních několika letech modifikována proendoskopickou aplikaci. Pozitivními výsledky jsou zejména snížená doba rekonvalescence a sní-žení pooperačního diskomfortu. Endoskopický zákrok je dále zjednodušen extraperitoneálnímpřístupem a použitím Mesh & Tacker techniky. To umožňuje provedení kvalitního závěsu vevýznamně zkráceném operačním čase.Cíl studie: Zhodnocení úvodních výsledků a zkušeností výše uvedeného nového laparoskopickéhoextraperitoneálního přístupu v řešení stresové inkontinence.Název a sídlo pracoviště: Oddělení gynekologie a minimálně invazivní chirurgie Nemocnice NaHomolce, Praha.Typ studie: Prospektivní pilotní.Metodika: K úvodnímu zhodnocení byly zařazeny pacientky se stresovou inkontinencí prokáza-nou klinicky a za pomoci urodynamických vyšetření (cystometrie, stresová profilometrie a uro-flowmetrie). K disekci Retziova prostoru byla použita laparoskopická technika pomocípreperitoneálního distenčního balonu (PDB, Origin Medsystems). Kolpofixace ke Cooperovýmvazům byla provedena pomocí techniky Mesh & Tacker, tj. polypropylenové síťky a aplikátoruhelikózních spirál (Origin Medsystems).Výsledky: V této pilotní studii u prvních 8 pacientek uzavíráme, že se jedná o velmi slibnou a zcelanovou minimálně invazivní techniku s výrazně zkrácenou operační dobou (35 minut), jednodu-chým provedením bez nutnosti laparoskopického endošití a s minimálním tkáňovým poškozením.Úvodní malý počet pacientek a krátká doba sledování zatím neumožňují definitivní závěry, i kdyžvšechny pacientky jsou zatím plně kontinentní.
The Burch procedure has enjoyed in the last decade a favourable status among open surgicalrepairs for stress urinary incontinence. In the last few years this technique was adapted forendoscopic aplication. This results in decreased recovery time and diminished postoperativepatients discomfort. This endoscopic procedure was further simplified by means of extraperitone-al approach and through the use of Mesh & Tacker technique. This enables a high quality durablecolposuspension in significantly shortened operational time.Objective: Evaluation of preliminary results and experiences of the abovementioned new laparos-copic extraperitoneal approach in the treatment of stress incontinence.Setting: Department of Gynaecology and minimally invasive surgery Na Homolce Hospital.Design: Prospective pilot study.Methods: The patients with stress incontinence proven clinically and by means of urodynamicinvestigation (cystometry, stress profilometry and uroflowmetry) were included in the study. TheRetzius space was dissected laparoscopically via preperitoneal distention balloon (PDB, OriginMedsystems). Colpofixation to Coopers ligaments was achieved by means of Mesh & Tacker tech-nique, e.g. polypropylen Mesh and aplicator of helicose spirals (Origin Medsystems).Results: In this pilot study of initial 8 patients we may conclude that the abovementioned methodis promising. Of note is shortened operational time (35 min), easy performance without necessityof laparoscopic endosuturing and minimal tissue damage. The small amount of patients and shortfollow up period would not allow definite conclusions but all the patients are sofar fully conti-nent.
- MeSH
- dospělí MeSH
- laparoskopie metody přístrojové vybavení MeSH
- lidé středního věku MeSH
- lidé MeSH
- miniinvazivní chirurgické výkony metody přístrojové vybavení MeSH
- stresová inkontinence moči chirurgie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- srovnávací studie MeSH
BACKGROUND: Structural biomolecular data are commonly stored in the PDB format. The PDB format is widely supported by software vendors because of its simplicity and readability. However, the PDB format cannot fully address many informatics challenges related to the growing amount of structural data. To overcome the limitations of the PDB format, a new textual format mmCIF was released in June 1997 in its version 1.0. mmCIF provides extra information which has the advantage of being in a computer readable form. However, this advantage becomes a disadvantage if a human must read and understand the stored data. While software tools exist to help to prepare mmCIF files, the number of available systems simplifying the comprehension and interpretation of the mmCIF files is limited. FINDINGS: In this paper we present mmView - a cross-platform web-based application that allows to explore comfortably the structural data of biomacromolecules stored in the mmCIF format. The mmCIF categories can be easily browsed in a tree-like structure, and the corresponding data are presented in a well arranged tabular form. The application also allows to display and investigate biomolecular structures via an integrated Java application Jmol. CONCLUSIONS: The mmView software system is primarily intended for educational purposes, but it can also serve as a useful research tool. The mmView application is offered in two flavors: as an open-source stand-alone application (available from http://sourceforge.net/projects/mmview) that can be installed on the user's computer, and as a publicly available web server.
- Publikační typ
- časopisecké články MeSH
SUMMARY: Structures in PDB tend to contain errors. This is a very serious issue for authors that rely on such potentially problematic data. The community of structural biologists develops validation methods as countermeasures, which are also included in the PDB deposition system. But how are these validation efforts influencing the structure quality of subsequently published data? Which quality aspects are improving, and which remain problematic? We developed ValTrendsDB, a database that provides the results of an extensive exploratory analysis of relationships between quality criteria, size and metadata of biomacromolecules. Key input data are sourced from PDB. The discovered trends are presented via precomputed information-rich plots. ValTrendsDB also supports the visualization of a set of user-defined structures on top of general quality trends. Therefore, ValTrendsDB enables users to see the quality of structures published by selected author, laboratory or journal, discover quality outliers, etc. ValTrendsDB is updated weekly. AVAILABILITY AND IMPLEMENTATION: Freely accessible at http://ncbr.muni.cz/ValTrendsDB. The web interface was implemented in JavaScript. The database was implemented in C++. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
The representation of carbohydrates in 3D space using symbols is a powerful visualization method, but such representations are lacking in currently available visualization software. The work presented here allows researchers to display carbohydrate 3D structures as 3D-SNFG symbols using LiteMol from a web browser (e.g., v.litemol.org/?loadFromCS=5T3X ). Any PDB ID can be substituted at the end of the URL. Alternatively, the user may enter a PDB ID or upload a structure. LiteMol is available at https://v.litemol.org and automatically depicts any carbohydrate residues as 3D-SNFG symbols. To embed LiteMol in a webpage, visit https://github.com/dsehnal/LiteMol .
Following the discovery of serious errors in the structure of biomacromolecules, structure validation has become a key topic of research, especially for ligands and non-standard residues. ValidatorDB (freely available at http://ncbr.muni.cz/ValidatorDB) offers a new step in this direction, in the form of a database of validation results for all ligands and non-standard residues from the Protein Data Bank (all molecules with seven or more heavy atoms). Model molecules from the wwPDB Chemical Component Dictionary are used as reference during validation. ValidatorDB covers the main aspects of validation of annotation, and additionally introduces several useful validation analyses. The most significant is the classification of chirality errors, allowing the user to distinguish between serious issues and minor inconsistencies. Other such analyses are able to report, for example, completely erroneous ligands, alternate conformations or complete identity with the model molecules. All results are systematically classified into categories, and statistical evaluations are performed. In addition to detailed validation reports for each molecule, ValidatorDB provides summaries of the validation results for the entire PDB, for sets of molecules sharing the same annotation (three-letter code) or the same PDB entry, and for user-defined selections of annotations or PDB entries.