Standard-of-care chemo- or radio-therapy can induce, besides tumor cell death, also tumor cell senescence. While senescence is considered to be a principal barrier against tumorigenesis, senescent cells can survive in the organism for protracted periods of time and they can promote tumor development. Based on this emerging concept, we hypothesized that elimination of such potentially cancer-promoting senescent cells could offer a therapeutic benefit. To assess this possibility, here we first show that tumor growth of proliferating mouse TC-1 HPV-16-associated cancer cells in syngeneic mice becomes accelerated by co-administration of TC-1 or TRAMP-C2 prostate cancer cells made senescent by pre-treatment with the anti-cancer drug docetaxel, or lethally irradiated. Phenotypic analyses of tumor-explanted cells indicated that the observed acceleration of tumor growth was attributable to a protumorigenic environment created by the co-injected senescent and proliferating cancer cells rather than to escape of the docetaxel-treated cells from senescence. Notably, accelerated tumor growth was effectively inhibited by cell immunotherapy using irradiated TC-1 cells engineered to produce interleukin IL-12. Collectively, our data document that immunotherapy, such as the IL-12 treatment, can provide an effective strategy for elimination of the detrimental effects caused by bystander senescent tumor cells in vivo.
- MeSH
- bystander efekt účinky léků MeSH
- časové faktory MeSH
- cytokiny genetika metabolismus MeSH
- experimentální nádory genetika metabolismus terapie MeSH
- imunoterapie adoptivní metody MeSH
- interleukin-12 biosyntéza farmakologie MeSH
- kombinovaná terapie MeSH
- myši inbrední C57BL MeSH
- nádorové buněčné linie MeSH
- protinádorové látky farmakologie MeSH
- stárnutí buněk účinky léků MeSH
- taxoidy farmakologie MeSH
- tumor burden účinky léků MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
CD4(+)CD25(+)Foxp3(+) T regulatory cells (Tregs) and CD1d-restricted invariant natural killer T (iNKT) cells are two cell types that are known to regulate immune reactions. Depletion or inactivation of Tregs using specific anti-CD25 antibodies in combination with immunostimulation is an attractive modality especially in anti-tumour immunotherapy. However, CD25 is not expressed exclusively on Tregs but also on subpopulations of activated lymphocytes. Therefore, the modulatory effects of the specific anti-CD25 antibodies can also be partially attributed to their interactions with the effector cells. Here, the effector functions of iNKT cells were analysed in combination with anti-CD25 mAb PC61. Upon PC61 administration, α-galactosylceramide (α-GalCer)-mediated activation of iNKT cells resulted in decreased IFN-γ but not IL-4 production. In order to determine whether mutual interactions between Tregs and iNKT cells take place, we compared IFNγ production after α-GalCer administration in anti-CD25-treated and "depletion of regulatory T cell" (DEREG) mice. Since no profound effects on IFNγ induction were observed in DEREG mice, deficient in FoxP3(+) Tregs, our results indicate that the anti-CD25 antibody acts directly on CD25(+) effector cells. In vivo experiments demonstrated that although both α-GalCer and PC61 administration inhibited TC-1 tumour growth in mice, no additive/synergic effects were observed when these substances were used in combination therapy.
- MeSH
- antigeny CD1d imunologie metabolismus MeSH
- ELISA MeSH
- experimentální nádory farmakoterapie imunologie patologie MeSH
- exprese genu účinky léků imunologie MeSH
- forkhead transkripční faktory imunologie metabolismus MeSH
- galaktosylceramidy aplikace a dávkování imunologie farmakologie MeSH
- interferon gama genetika imunologie metabolismus MeSH
- interleukin-4 genetika imunologie metabolismus MeSH
- Kaplanův-Meierův odhad MeSH
- mezibuněčné signální peptidy a proteiny genetika imunologie metabolismus MeSH
- monoklonální protilátky aplikace a dávkování imunologie farmakologie MeSH
- myši inbrední C57BL MeSH
- myši transgenní MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- NKT buňky účinky léků imunologie metabolismus MeSH
- polymerázová řetězová reakce s reverzní transkripcí MeSH
- protokoly protinádorové kombinované chemoterapie terapeutické užití MeSH
- průtoková cytometrie MeSH
- receptor interleukinu-2 - alfa-podjednotka imunologie metabolismus MeSH
- regulační T-lymfocyty účinky léků imunologie metabolismus MeSH
- tumor burden účinky léků imunologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Loss or downregulation of MHC class I molecules on tumour cells is a common mechanism by which tumours can escape T-cell mediated immune responses. In this study, we examined the role of different immune cell lineages in the development of immunity against tumours of the same aetiology but with different MHC class I expression. In vivo depletion of CD8+ cells, but not of CD4+ or NK1.1+ cells in the immunization period resulted in complete elimination of the protective effects of immunization with irradiated TC-1 cells (MHC class I-positive cell line) against the TC-1 tumour challenge. After immunization with irradiated TC-1/A9 or with MK16 tumour cells (MHC class I-deficient sublines) a remarkable dependence on the presence of NK1.1+ cells was observed, while the tumour growth inhibition after CD4+ or CD8+ depletion was not efficient. Cytotoxic activity induced by TC-1 cell immunization was significantly abrogated in the CD8+ and CD4+ but not NK1.1+ cell-depleted mice, as compared to the immunized only controls. After MK16 or TC-1/A9 cell immunization, NK1.1+ but not CD8+ and CD4+ cell-depleted mice displayed significant reduction of specific cytotoxicity. Mice immunized with TC-1 cells showed similar percentage of IFNγ producing cells in CD8+, CD4+ and NK1.1+ cell populations. On the other hand, the highest proportion of IFNγ producing cells after immunization with TC-1/A9 or MK16 cells was concentrated into the NK1.1-positive spleen cell population. Our data demonstrate that the development of immunity against MHC class I-deficient tumours is highly dependent on the activity NK1.1+ cell population.
- MeSH
- antigeny Ly imunologie MeSH
- buňky NK imunologie MeSH
- CD4-pozitivní T-lymfocyty imunologie MeSH
- CD8-pozitivní T-lymfocyty imunologie MeSH
- ELISA MeSH
- experimentální nádory imunologie MeSH
- lektinové receptory NK-buněk - podrodina B imunologie MeSH
- lidský papilomavirus 16 MeSH
- MHC antigeny I. třídy imunologie MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- protinádorové vakcíny imunologie MeSH
- průtoková cytometrie MeSH
- separace buněk MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Maturation of dendritic cells (DC) towards functional antigen-presenting cells is a complex process, the regulation of which may also involve epigenetic mechanisms. Thus, it is of interest to investigate how gene expression changes during DC maturation can be influenced with epigenetic agents, such as DNA methyltransferase or histone deacetylase inhibitors. Here, we document the effects of DNA methyltransferase inhibitor 5-azacytidine (5AC) and histone deacetylase inhibitor trichostatin A (TSA) on the murine bone marrow-derived, as well as on the human monocyte-derived DC maturation. The major impact of 5AC and TSA on the DC maturation process consisted in the inhibition of unmethylated CpG oligodeoxynucleotide (CpG ODN) 1826 or LPS-induced activation of pro- and anti-inflammatory cytokine gene expression activation. In the in vitro studies, TSA but not 5AC significantly reduced the capacity of the peptide-pulsed DC to induce total spleen as well as CD8(+) or CD4(+) cell proliferation. IFNγ production by the specific CD4(+) spleen cells co-cultured with TSA- but not with 5AC-treated DC was lower, as compared to the cytokine production after co-cultivation with untreated mature DC. Collectively, these results demonstrate the potential of epigenetic agents, which are under intensive investigation as promising anti-tumour agents, to hamper the immune response induction through their inhibitory effects on DC.
- MeSH
- azacytidin farmakologie MeSH
- buněčná diferenciace MeSH
- CD4-pozitivní T-lymfocyty účinky léků imunologie MeSH
- cytokiny genetika MeSH
- dendritické buňky cytologie účinky léků fyziologie MeSH
- inhibitory histondeacetylas farmakologie MeSH
- kyseliny hydroxamové farmakologie MeSH
- lidé MeSH
- metylace DNA účinky léků MeSH
- molekulární sekvence - údaje MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- sekvence aminokyselin MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Genetically modified tumour cells producing cytokines such as interleukin 12 (IL-12) are potent activators of the antitumour immune responses and represent a promising therapeutic modality when combined with chemotherapy. The objective of this study was to examine whether IL-12-producing cellular vaccines can augment chemotherapy of human papilloma virus (HPV) 16-associated murine tumours with the cytostatic agent gemcitabine (GEM). We found that peritumoral administration of IL-12-producing tumour vaccines enhanced the effect of cytoreductive therapy with GEM both in non-metastasizing murine carcinoma TC-1 and in metastasizing murine carcinoma MK16. The percentage of mice with MK16 metastases and the number of lung metastatic nodules was substantially decreased. In another clinically relevant setting, surgical minimal residual tumour disease, the administration of IL-12-producing tumour vaccine and GEM after the MK16 tumour surgery reduced the percentage of mice with tumour recurrences; similarly, the percentage of metastasis-bearing mice and the number of metastatic nodules was decreased. Tumour inhibitory effects exerted by GEM plus IL-12 were associated with high production of interferon-γ (IFNγ) by splenocytes. Our results suggest that the IL-12-producing vaccine can enhance the effect of GEM chemotherapy in some HPV16-associated murine tumour models.
- MeSH
- deoxycytidin analogy a deriváty farmakologie MeSH
- ELISA MeSH
- experimentální nádory farmakoterapie virologie MeSH
- genetická terapie metody MeSH
- infekce papilomavirem komplikace MeSH
- interleukin-12 biosyntéza MeSH
- kombinovaná terapie MeSH
- lidský papilomavirus 16 MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- protinádorové látky farmakologie MeSH
- protinádorové vakcíny farmakologie MeSH
- průtoková cytometrie MeSH
- separace buněk MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Downregulation of MHC class I expression on the cell surface is a common mechanism by which tumour cells, including cervical carcinoma, can escape the T cell-mediated anti-tumour immunity. This downregulation represents an obstacle for the efficacy of anti-tumour vaccines. In this study, we investigated the efficacy of prophylactic peptide and peptide-pulsed dendritic cell-based vaccines in a murine model of experimental MHC class I-deficient tumours (TC-1/A9), expressing E6/E7 oncogenes derived from HPV16, and compared the efficacy of particular vaccination settings to anti-tumour protection against parental MHC class I-positive TC-1 tumours. Peptide vaccine based on the 'short' peptide E749-57 harbouring solely the CTL epitope and co-administered to the C57BL/6 mice with CpG oligodeoxynucleotide (CpG ODN) 1826 was effective against MHC class I-positive but not -deficient tumours, while the 'longer' peptide E744-62 (peptide 8Q, harbouring CTL and Th epitopes)-based vaccines were also effective against MHC class I-deficient tumours. We have compared the adjuvant efficacies of two CpG ODN, CpG ODN 1826 and CpG ODN 1585. The 8Q peptide immunisation combined with CpG ODN 1585 inhibited growth of the TC-1/A9 tumours more effectively as compared to CpG ODN 1826. Further, we investigated the efficacy of cellular vaccines based on ex vivo cultured dendritic cells pulsed with either E749-57 or E744-62 peptides and matured with CpG ODN 1826. Unlike in the peptide immunisation setting, treatment with dendritic cells pulsed with a 'short' peptide resulted in the tumour growth inhibition, albeit weaker as compared to the immunisation with the longer peptide. Our data demonstrate that peptide and dendritic cell-based vaccines can be designed to elicit protective immunity against MHC class I-deficient tumours.
- MeSH
- adjuvantní radioterapie metody MeSH
- CpG ostrůvky MeSH
- dendritické buňky cytologie MeSH
- epitopy chemie MeSH
- geny MHC třídy I MeSH
- lidé MeSH
- myši MeSH
- oligonukleotidy genetika MeSH
- Papillomavirus E7 - proteiny chemie MeSH
- peptidy chemie MeSH
- protinádorové vakcíny chemie MeSH
- průtoková cytometrie MeSH
- regulace genové exprese MeSH
- subjednotkové vakcíny genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Natural killer T (NKT) cells are potent modulators of antitumor immunity. Their protective effects can be achieved upon their activation by glycolipid ligands presented in the context of the CD1d molecule. These CD1d-binding glycolipid antigens have been described as potent therapeutic agents against tumors, infections, as well as autoimmune diseases. Immunoregulatory and therapeutic effects of glycolipid ligands depend on their structure and modes of administration. Therefore, more studies are needed for optimization of the particular therapeutic settings. This study was focused on the tumor-inhibitory effects of 12 carbon acyl chain beta-galactosyl ceramide (C12 beta-D-Galactosyl Ceramide; beta-GalCer(C12)) on the growth of human papillomavirus type 16 (HPV16)-associated neoplasms transplanted in syngeneic mice. Treatment of tumor-bearing mice with beta-GalCer(C12) 3-14 days after tumor cell transplantation significantly inhibited the growth of the major histocompatibility complex (MHC) Class I-positive (TC-1), as well as MHC Class I-deficient (TC-1/A9) HPV16-associated tumors. Moreover, administration of beta-GalCer(C12) after surgical removal of TC-1 tumors inhibited the growth of tumor recurrences. Similar results were obtained in the treatment of tumors after chemotherapy. beta-GalCer(C12) treatment turned out to be also synergistic with immunotherapy based on administration of IL-12-producing cellular vaccines. These results suggest that beta-GalCer(C12), whose antitumor effects have so far not been studied in detail, can be effective for the treatment of minimal residual tumor disease as well as an adjuvant for cancer immunotherapy.
- MeSH
- ceramidy farmakologie MeSH
- imunoterapie MeSH
- infekce papilomavirem imunologie patologie prevence a kontrola MeSH
- lidé MeSH
- lidský papilomavirus 16 izolace a purifikace MeSH
- lokální recidiva nádoru imunologie patologie prevence a kontrola MeSH
- monosacharidy farmakologie MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nádorové buňky kultivované transplantace MeSH
- reziduální nádor farmakoterapie chirurgie virologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Local recurrences at the site of tumor resection or after chemotherapy, as well as distant micrometastases represent major problems in oncology. Therapeutic strategies based on insertion of immunostimulatory genes into the genome of tumor cells followed by vaccination with the resulting genetically modified and irradiated cellular vaccines represent a new potential prospect for the treatment of cancer patients. These strategies are based on the presumption that many, if not all tumors, possess cell surface antigens capable of being recognized by defence effectors of the immune system, as well as on the presumption that local treatment of primary tumors can, due to its immunizing potential, result also in the inhibition of distant metastases. Genetically modified cellular vaccines were found to be efficient against cancer both in experimental models and in tumor-bearing patients. It was also shown in various systems that the efficacy of conventional therapeutic modalities can be supported by adjuvant administration of genetically modified vaccines, as well as by depletion of immunosuppressive immunocyte subsets. The purpose of this review was to summarize and evaluate the results obtained with the administration of genetically modified cellular vaccines as well as with depletion of immunosuppressive immunocytes performed as treatment of minimal residual disease after surgery / chemotherapy in the experimental model of murine tumors mimicking human HPV16-associated neoplasms. The prospects and limitations of these adjuvant immunotherapeutic modalities are discussed.
- MeSH
- infekce papilomavirem farmakoterapie imunologie chirurgie MeSH
- lidé MeSH
- lidský papilomavirus 16 genetika imunologie MeSH
- melanom experimentální genetika imunologie terapie MeSH
- myši MeSH
- protinádorové vakcíny terapeutické užití MeSH
- regulační T-lymfocyty imunologie MeSH
- reziduální nádor genetika imunologie terapie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We have examined the effect of IL-12-producing cellular vaccines on the cytotoxicity and proliferative potential of CD45+ tumour-infiltrating cells (TIL) in mice carrying syngeneic TC-1 and TC-1/A9 HPV 16-associated tumours after chemotherapy with CBM-4A ifosfamide derivative. The chemotherapy resulted in the decrease of the CD4+ and CD8+ TIL, increase of the Gr-1+/CD11b+ TIL, no changes in the infiltration with CD4+/CD25+ Treg TIL, and decrease of the cytolytic and proliferative potential of the CD45+ TIL. Subsequent immunotherapy with the IL-12-producing, genetically modified TC-1 (TC-1-IL-12) cells increased tumour infiltration with CD8+ and CD4+ cells, decreased the Gr-1+/CD11b+ cells, and increased the cytolytic and proliferative potential of the CD45+ TIL. Taken together, these findings suggest that peritumoral administration of the IL-12-producing cellular vaccine can restore the cytolytic potential and inhibit immunosuppressive TIL-dependent mechanisms in the individuals bearing HPV 16-associated tumours, and explain our previously described tumour-inhibitory effects of the vaccine in mice with minimal residual disease after the tumour chemotherapy.
- MeSH
- CD4-pozitivní T-lymfocyty imunologie MeSH
- CD8-pozitivní T-lymfocyty imunologie MeSH
- cytotoxické testy imunologické MeSH
- experimentální nádory imunologie terapie virologie MeSH
- financování organizované MeSH
- genetická terapie MeSH
- ifosfamid analogy a deriváty terapeutické užití MeSH
- imunoenzymatické techniky MeSH
- imunoterapie MeSH
- infekce papilomavirem imunologie terapie virologie MeSH
- inhibitory angiogeneze terapeutické užití MeSH
- interleukin-12 fyziologie MeSH
- lidé MeSH
- lidský papilomavirus 16 patogenita MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nádorové buňky kultivované MeSH
- proliferace buněk MeSH
- průtoková cytometrie MeSH
- tumor infiltrující lymfocyty imunologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH