Tumor cells often adapt to amino acid deprivation through metabolic rewiring, compensating for the loss with alternative amino acids/substrates. We have described such a scenario in leukemic cells treated with L-asparaginase (ASNase). Clinical effect of ASNase is based on nutrient stress achieved by its dual enzymatic action which leads to depletion of asparagine and glutamine and is accompanied with elevated aspartate and glutamate concentrations in serum of acute lymphoblastic leukemia patients. We showed that in these limited conditions glutamate uptake compensates for the loss of glutamine availability. Extracellular glutamate flux detection confirms its integration into the TCA cycle and its participation in nucleotide and glutathione synthesis. Importantly, it is glutamate-driven de novo synthesis of glutathione which is the essential metabolic pathway necessary for glutamate's pro-survival effect. In vivo findings support this effect by showing that inhibition of glutamate transporters enhances the therapeutic effect of ASNase. In summary, ASNase induces elevated extracellular glutamate levels under nutrient stress, which leads to a rewiring of intracellular glutamate metabolism and has a negative impact on ASNase treatment.
- MeSH
- akutní lymfatická leukemie farmakoterapie metabolismus patologie MeSH
- antitumorózní látky farmakologie MeSH
- asparaginasa * farmakologie metabolismus MeSH
- citrátový cyklus účinky léků MeSH
- glutamin metabolismus MeSH
- glutathion * metabolismus MeSH
- kyselina glutamová * metabolismus MeSH
- lidé MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- xenogenní modely - testy antitumorózní aktivity MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
AIMS: This study investigates the neuroprotective effects of lipidized analogues of 2-SS-CART(61-102) derived from anorexigenic neuropeptide cocaine- and amphetamine-regulated transcript peptide (CARTp) in light of the link between obesity, its comorbidities, and the development of Alzheimer's disease. METHODS: We introduce novel lipidized analogues derived from 2-SS-CART(61-102), a specific analogue of natural CART(61-102), with two disulfide bridges. Using hypothermic PC12 cells, we tested the effect of the most potent analogues on Tau phosphorylation. We further described the anorexigenic and neuroprotective potential of subcutaneously (SC) injected lipidized CARTp analogue in a mouse model with prediabetes and obesity induced by neonatal monosodium glutamate (MSG) administration. RESULTS: Compared to the non-lipidized 2-SS-CART(61-102), all lipidized analogues exhibited a potent binding affinity to PC12 cells and enhanced in vitro stability in rat plasma. Two most potent lipidized analogues attenuated hypothermia-induced Tau hyperphosphorylation at multiple epitopes. Subsequently, chronic SC treatment with palm-2-SS-CART(61-102) significantly decreased body weight and food intake, improved metabolic parameters, decreased level of pTau and increased neurogenesis in hippocampi of obese MSG mice. CONCLUSION: Our unique CARTp analogue palm-2-SS-CART(61-102) shows promise as a potent anti-obesity and neuroprotective agent.
- MeSH
- anorektika farmakologie MeSH
- buňky PC12 MeSH
- fosforylace účinky léků MeSH
- glutamát sodný * MeSH
- krysa rodu rattus MeSH
- lipidy chemie krev MeSH
- modely nemocí na zvířatech MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- neuroprotektivní látky * farmakologie MeSH
- obezita * metabolismus farmakoterapie MeSH
- proteiny nervové tkáně * metabolismus MeSH
- proteiny tau metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Glutamate carboxypeptidase II (GCPII, also known as PSMA or FOLH1) is responsible for the cleavage of N-acetyl-aspartyl-glutamate (NAAG) to N-acetyl-aspartate and glutamate in the central nervous system and facilitates the intestinal absorption of folate by processing dietary folyl-poly-γ-glutamate in the small intestine. The physiological function of GCPII in other organs like kidneys is still not known. GCPII inhibitors are neuroprotective in various conditions (e.g., ischemic brain injury) in vivo; however, their utilization as potential drug candidates has not been investigated in regard to not yet known GCPII activities. To explore the GCPII role and possible side effects of GCPII inhibitors, we performed parallel metabolomic and lipidomic analysis of the cerebrospinal fluid (CSF), urine, plasma, and brain tissue of mice with varying degrees of GCPII deficiency (fully deficient in Folh1, -/-; one allele deficient in Folh1, +/-; and wild type, +/+). Multivariate analysis of metabolites showed no significant differences between wild-type and GCPII-deficient mice (except for NAAG), although changes were observed between the sex and age. NAAG levels were statistically significantly increased in the CSF, urine, and plasma of GCPII-deficient mice. However, no difference in NAAG concentrations was found in the whole brain lysate likely because GCPII, as an extracellular enzyme, can affect only extracellular and not intracellular NAAG concentrations. Regarding the lipidome, the most pronounced genotype-linked changes were found in the brain tissue. In brains of GCPII-deficient mice, we observed statistically significant enrichment in phosphatidylcholine-based lipids and reduction of sphingolipids and phosphatidylethanolamine plasmalogens. We hypothesize that the alteration of the NAA-NAAG axis by absent GCPII activity affected myelin composition. In summary, the absence of GCPII and thus similarly its inhibition do not have detrimental effects on metabolism, with just minor changes in the brain lipidome.
- MeSH
- dipeptidy metabolismus MeSH
- glutamátkarboxypeptidasa II * genetika metabolismus MeSH
- kyselina glutamová MeSH
- lipidomika * MeSH
- lipidy chemie MeSH
- metabolomika * MeSH
- mozek metabolismus MeSH
- myši MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Neurosteroids are investigated as effective antidotes for the poisoning induced by tetramethylenedisulfotetramine (TMDT) as well as treatments for epileptic spasms during infancy. Both these conditions are quite resistant to pharmacotherapy; thus, a search for new treatments is warranted. METHODS: In this study, we determined the efficacy of two novel neurosteroids, pregnanolone glutamate (PAG) and pregnanolone pyroglutamate (PPG), and tested these drugs in doses of 1-10 mg/kg (ip) against the TMDT syndrome and in our rodent model of infantile spasms. RESULTS: Only PPG in doses 5 and 10 mg/kg suppressed the severity of the TMDT syndrome and TMDT-induced lethality, while the 1 mg/kg dose was without an effect. Interestingly, the 1 mg/kg dose of PPG in combination with 1 mg/kg of diazepam was also effective against TMDT poisoning. Neither PAG nor PPG were effective against experimental spasms in the N-methyl-D-aspartate (NMDA)-triggered model of infantile spasms. CONCLUSIONS: While evidence suggests that PAG can act through multiple actions which include allosteric inhibition of NMDA-induced and glycine receptor-evoked currents as well as augmentation of ɣ-aminobutyric acid subtype A (GABAA) receptor-induced currents, the agent appears to neither have the appropriate mechanistic signature for activity in the infantile spasm model, nor the adequate potency, relative to PPG, for ameliorating the TMDT syndrome. The full mechanisms of action of PPG, which may become a potent TMDT antidote either alone or in combination with diazepam are yet unknown and thus require further investigation.
- MeSH
- diazepam farmakologie MeSH
- hlodavci MeSH
- křeče u dětí * chemicky indukované farmakoterapie MeSH
- kyselina glutamová MeSH
- kyselina pyrrolidonkarboxylová MeSH
- N-methylaspartát toxicita terapeutické užití MeSH
- neurosteroidy * MeSH
- neurotoxické syndromy * MeSH
- pregnanolon škodlivé účinky MeSH
- spasmus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
N-methyl-D-aspartate receptors (NMDARs) play an essential role in excitatory neurotransmission in the mammalian brain, and their physiological importance is underscored by the large number of pathogenic mutations that have been identified in the receptor's GluN subunits and associated with a wide range of diseases and disorders. Here, we characterized the functional and pharmacological effects of the pathogenic N650K variant in the GluN1 subunit, which is associated with developmental delay and seizures. Our microscopy experiments showed that when expressed in HEK293 cells (from ATCC®), the GluN1-N650K subunit increases the surface expression of both GluN1/GluN2A and GluN1/GluN2B receptors, but not GluN1/GluN3A receptors, consistent with increased surface expression of the GluN1-N650K subunit expressed in hippocampal neurons (from embryonic day 18 of Wistar rats of both sexes). Using electrophysiology, we found that the GluN1-N650K variant increases the potency of GluN1/GluN2A receptors to both glutamate and glycine but decreases the receptor's conductance and open probability. In addition, the GluN1-N650K subunit does not form functional GluN1/GluN2B receptors but does form fully functional GluN1/GluN3A receptors. Moreover, in the presence of extracellular Mg2+, GluN1-N650K/GluN2A receptors have a similar and increased response to ketamine and memantine, respectively, while the effect of both drugs had markedly slower onset and offset compared to wild-type GluN1/GluN2A receptors. Finally, we found that expressing the GluN1-N650K subunit in hippocampal neurons reduces excitotoxicity, and memantine shows promising neuroprotective effects in neurons expressing either wild-type GluN1 or the GluN1-N650K subunit. This study provides the functional and pharmacological characterization of NMDARs containing the GluN1-N650K variant.
- MeSH
- HEK293 buňky MeSH
- krysa rodu rattus MeSH
- kyselina glutamová MeSH
- lidé MeSH
- memantin * farmakologie MeSH
- potkani Wistar MeSH
- receptory N-methyl-D-aspartátu * genetika MeSH
- savci MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Aspartate-glutamate carrier 2 (AGC2, citrin) is a mitochondrial carrier expressed in the liver that transports aspartate from mitochondria into the cytosol in exchange for glutamate. The AGC2 is the main component of the malate-aspartate shuttle (MAS) that ensures indirect transport of NADH produced in the cytosol during glycolysis, lactate oxidation to pyruvate, and ethanol oxidation to acetaldehyde into mitochondria. Through MAS, AGC2 is necessary to maintain intracellular redox balance, mitochondrial respiration, and ATP synthesis. Through elevated cytosolic Ca2+ level, the AGC2 is stimulated by catecholamines and glucagon during starvation, exercise, and muscle wasting disorders. In these conditions, AGC2 increases aspartate input to the urea cycle, where aspartate is a source of one of two nitrogen atoms in the urea molecule (the other is ammonia), and a substrate for the synthesis of fumarate that is gradually converted to oxaloacetate, the starting substrate for gluconeogenesis. Furthermore, aspartate is a substrate for the synthesis of asparagine, nucleotides, and proteins. It is concluded that AGC2 plays a fundamental role in the compartmentalization of aspartate and glutamate metabolism and linkage of the reactions of MAS, glycolysis, gluconeogenesis, amino acid catabolism, urea cycle, protein synthesis, and cell proliferation. Targeting of AGC genes may represent a new therapeutic strategy to fight cancer. [BMB Reports 2023; 56(7): 385-391].
- MeSH
- glukosa * metabolismus MeSH
- játra metabolismus MeSH
- kyselina aspartová * metabolismus MeSH
- kyselina glutamová metabolismus MeSH
- Publikační typ
- zprávy MeSH
In this study, we utilized proton magnetic resonance spectroscopy (MRS) to understand the role of glutamate (Glu), glutamine (Gln), and gamma-aminobutyric acid (GABA) of OCD patients in the pregenual anterior cingulate cortex (pgACC). In total, 54 patients with OCD and 54 healthy controls (HC) matched for age and sex were included in the study. They underwent MRS in the pgACC region to calculate the concentrations of Glu, Gln, GABA, and Glu + Gln (Glx). After quality control of the MRS data, 21 OCD and 21 HC were statistically analyzed. The severity of symptoms were evaluated using the Yale-Brown Obsessive-Compulsive Scale (YBOCS). In the statistical analysis, we compared differences between groups for the metabolites; in the OCD we analyzed the correlations with symptom severity, medication status, age, and duration of illness. A significant decrease in Glx, in Glu, and in Gln in the pgACC were observed in the OCD compared to HC. The correlation statistics showed a significant positive correlation between Glu levels and the YBOCS compulsions subscale. The results indicate that patients with OCD present a disturbance in glutamatergic metabolism in the pgACC. The results also demonstrate that these changes correlate with the severity of compulsions.
- MeSH
- cingulární gyrus * metabolismus MeSH
- GABA metabolismus MeSH
- glutamin metabolismus MeSH
- kyselina glutamová metabolismus MeSH
- lidé MeSH
- magnetická rezonanční spektroskopie metody MeSH
- obsedantně kompulzivní porucha * metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Lithium is regarded as the first-line treatment for bipolar disorder (BD), a severe and disabling mental health disorder that affects about 1% of the population worldwide. Nevertheless, lithium is not consistently effective, with only 30% of patients showing a favorable response to treatment. To provide personalized treatment options for bipolar patients, it is essential to identify prediction biomarkers such as polygenic scores. In this study, we developed a polygenic score for lithium treatment response (Li+PGS) in patients with BD. To gain further insights into lithium's possible molecular mechanism of action, we performed a genome-wide gene-based analysis. Using polygenic score modeling, via methods incorporating Bayesian regression and continuous shrinkage priors, Li+PGS was developed in the International Consortium of Lithium Genetics cohort (ConLi+Gen: N = 2367) and replicated in the combined PsyCourse (N = 89) and BipoLife (N = 102) studies. The associations of Li+PGS and lithium treatment response - defined in a continuous ALDA scale and a categorical outcome (good response vs. poor response) were tested using regression models, each adjusted for the covariates: age, sex, and the first four genetic principal components. Statistical significance was determined at P < 0.05. Li+PGS was positively associated with lithium treatment response in the ConLi+Gen cohort, in both the categorical (P = 9.8 × 10-12, R2 = 1.9%) and continuous (P = 6.4 × 10-9, R2 = 2.6%) outcomes. Compared to bipolar patients in the 1st decile of the risk distribution, individuals in the 10th decile had 3.47-fold (95%CI: 2.22-5.47) higher odds of responding favorably to lithium. The results were replicated in the independent cohorts for the categorical treatment outcome (P = 3.9 × 10-4, R2 = 0.9%), but not for the continuous outcome (P = 0.13). Gene-based analyses revealed 36 candidate genes that are enriched in biological pathways controlled by glutamate and acetylcholine. Li+PGS may be useful in the development of pharmacogenomic testing strategies by enabling a classification of bipolar patients according to their response to treatment.
- MeSH
- acetylcholin metabolismus MeSH
- antimanika terapeutické užití farmakologie MeSH
- Bayesova věta MeSH
- bipolární porucha * farmakoterapie genetika MeSH
- celogenomová asociační studie metody MeSH
- dospělí MeSH
- jednonukleotidový polymorfismus genetika MeSH
- kohortové studie MeSH
- kyselina glutamová metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- lithium * terapeutické užití farmakologie MeSH
- multifaktoriální dědičnost * genetika MeSH
- sloučeniny lithia terapeutické užití farmakologie MeSH
- výsledek terapie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Major depressive disorder (MDD) is underlined by neurochemical changes in the brain. Proton magnetic resonance spectroscopy (1H MRS) is a useful tool for their examination as it provides information about the levels of metabolites. This review summarises the current knowledge of 1H MRS findings from rodent models of MDD, assesses the results from both a biological and a technical perspective, and identifies the main sources of bias. From a technical point of view, bias-introducing factors are the diversity of the measured volumes and their positioning in the brain, the data processing, and the metabolite concentration expression. The biological variables are strain, sex, and species, as well as the model itself, and in vivo vs. ex vivo exploration. This review identified some consistency in the 1H MRS findings in the models of MDD: lower levels of glutamine, glutamate + glutamine, and higher levels of myo-inositol and taurine in most of the brain regions of MDD models. This may suggest changes in regional metabolism, neuronal dysregulation, inflammation, and a compensatory effect reaction in the MDD rodent models.
- MeSH
- deprese MeSH
- depresivní porucha unipolární * metabolismus MeSH
- glutamin * metabolismus MeSH
- hlodavci metabolismus MeSH
- kyselina aspartová metabolismus MeSH
- kyselina glutamová metabolismus MeSH
- mozek metabolismus MeSH
- protonová magnetická rezonanční spektroskopie metody MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
The fluorescent glutamate indicator iGluSnFR enables imaging of neurotransmission with genetic and molecular specificity. However, existing iGluSnFR variants exhibit low in vivo signal-to-noise ratios, saturating activation kinetics and exclusion from postsynaptic densities. Using a multiassay screen in bacteria, soluble protein and cultured neurons, we generated variants with improved signal-to-noise ratios and kinetics. We developed surface display constructs that improve iGluSnFR's nanoscopic localization to postsynapses. The resulting indicator iGluSnFR3 exhibits rapid nonsaturating activation kinetics and reports synaptic glutamate release with decreased saturation and increased specificity versus extrasynaptic signals in cultured neurons. Simultaneous imaging and electrophysiology at individual boutons in mouse visual cortex showed that iGluSnFR3 transients report single action potentials with high specificity. In vibrissal sensory cortex layer 4, we used iGluSnFR3 to characterize distinct patterns of touch-evoked feedforward input from thalamocortical boutons and both feedforward and recurrent input onto L4 cortical neuron dendritic spines.
- MeSH
- kinetika MeSH
- kyselina glutamová * metabolismus MeSH
- myši MeSH
- nervový přenos * MeSH
- neurony fyziologie MeSH
- synapse fyziologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH