The COMPASS Collaboration performed measurements of the Drell-Yan process in 2015 and 2018 using a 190 GeV/c π^{-} beam impinging on a transversely polarized ammonia target. Combining the data of both years, we present final results on the amplitudes of five azimuthal modulations, which correspond to transverse-spin-dependent azimuthal asymmetries (TSAs) in the dimuon production cross section. Three of them probe the nucleon leading-twist Sivers, transversity, and pretzelosity transverse-momentum dependent (TMD) parton distribution functions (PDFs). The other two are induced by subleading effects. These TSAs provide unique new inputs for the study of the nucleon TMD PDFs and their universality properties. In particular, the Sivers TSA observed in this measurement is consistent with the fundamental QCD prediction of a sign change of naive time-reversal-odd TMD PDFs when comparing the Drell-Yan process with deep inelastic scattering. Also, within the context of model predictions, the observed transversity TSA is consistent with the expectation of a sign change for the Boer-Mulders function.
- Publikační typ
- časopisecké články MeSH
The COMPASS Collaboration experiment recently discovered a new isovector resonancelike signal with axial-vector quantum numbers, the a_{1}(1420), decaying to f_{0}(980)π. With a mass too close to and a width smaller than the axial-vector ground state a_{1}(1260), it was immediately interpreted as a new light exotic meson, similar to the X, Y, Z states in the hidden-charm sector. We show that a resonancelike signal fully matching the experimental data is produced by the decay of the a_{1}(1260) resonance into K^{*}(→Kπ)K[over ¯] and subsequent rescattering through a triangle singularity into the coupled f_{0}(980)π channel. The amplitude for this process is calculated using a new approach based on dispersion relations. The triangle-singularity model is fitted to the partial-wave data of the COMPASS experiment. Despite having fewer parameters, this fit shows a slightly better quality than the one using a resonance hypothesis and thus eliminates the need for an additional resonance in order to describe the data. We thereby demonstrate for the first time in the light-meson sector that a resonancelike structure in the experimental data can be described by rescattering through a triangle singularity, providing evidence for a genuine three-body effect.
- Publikační typ
- časopisecké články MeSH
We describe an analysis comparing the pp[over ¯] elastic cross section as measured by the D0 Collaboration at a center-of-mass energy of 1.96 TeV to that in pp collisions as measured by the TOTEM Collaboration at 2.76, 7, 8, and 13 TeV using a model-independent approach. The TOTEM cross sections, extrapolated to a center-of-mass energy of sqrt[s]=1.96 TeV, are compared with the D0 measurement in the region of the diffractive minimum and the second maximum of the pp cross section. The two data sets disagree at the 3.4σ level and thus provide evidence for the t-channel exchange of a colorless, C-odd gluonic compound, also known as the odderon. We combine these results with a TOTEM analysis of the same C-odd exchange based on the total cross section and the ratio of the real to imaginary parts of the forward elastic strong interaction scattering amplitude in pp scattering for which the significance is between 3.4σ and 4.6σ. The combined significance is larger than 5σ and is interpreted as the first observation of the exchange of a colorless, C-odd gluonic compound.
- Publikační typ
- časopisecké články MeSH
Since 2012, the European Radiation Dosimetry Group (EURADOS) has developed its Strategic Research Agenda (SRA), which contributes to the identification of future research needs in radiation dosimetry in Europe. Continued scientific developments in this field necessitate regular updates and, consequently, this paper summarises the latest revision of the SRA, with input regarding the state of the art and vision for the future contributed by EURADOS Working Groups and through a stakeholder workshop. Five visions define key issues in dosimetry research that are considered important over at least the next decade. They include scientific objectives and developments in (i) updated fundamental dose concepts and quantities, (ii) improved radiation risk estimates deduced from epidemiological cohorts, (iii) efficient dose assessment for radiological emergencies, (iv) integrated personalised dosimetry in medical applications and (v) improved radiation protection of workers and the public. This SRA will be used as a guideline for future activities of EURADOS Working Groups but can also be used as guidance for research in radiation dosimetry by the wider community. It will also be used as input for a general European research roadmap for radiation protection, following similar previous contributions to the European Joint Programme for the Integration of Radiation Protection Research, under the Horizon 2020 programme (CONCERT). The full version of the SRA is available as a EURADOS report (www.eurados.org).
- MeSH
- dávka záření MeSH
- ionizující záření MeSH
- lidé MeSH
- monitorování radiace * MeSH
- radiační ochrana * MeSH
- radiometrie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
Heat treatment is needed to increase the luminescence intensity of ZnO:Ga particles, but it comes at the cost of higher particle agglomeration. Higher agglomeration results in low transparency of scintillating powder when embedded in a matrix and constitutes one of the biggest disadvantages, besides low light yield and low stopping power, of ZnO:Ga powder. Limiting ZnO:Ga particle size is therefore a key step in order to prepare highly luminescent and transparent composites with prospects for optical applications. In this work, SiO2 coating was successfully used to improve luminescence intensity or limitation of crystallite size growth during further annealing. Furthermore, ZnO:Ga and ZnO:Ga-SiO2 core-shells were embedded in a polystyrene matrix.
- Publikační typ
- časopisecké články MeSH
We describe a new and model-independent Lévy imaging method of quality fits to the published datasets and reconstruct the amplitude of high-energy pp and p p ¯ elastic scattering processes. This method allows us to determine the excitation function of the shadow profile P(b), the elastic slope B(t) and the nuclear phase ϕ ( t ) functions of pp and p p ¯ collisions directly from the data. Surprisingly, notable qualitative differences in B(t) for pp and for p p ¯ collisions point towards an Odderon effect. As a by-product, we clearly identify the proton substructure with two different sizes at the ISR and LHC energies, that has striking similarity to a dressed quark (at the ISR) and a dressed diquark (at the LHC). We present model-independent results for the corresponding sizes and cross-sections for such a substructure for the existing data at different energies.
- Publikační typ
- časopisecké články MeSH
The first measurement of transverse-spin-dependent azimuthal asymmetries in the pion-induced Drell-Yan (DY) process is reported. We use the CERN SPS 190 GeV/c π^{-} beam and a transversely polarized ammonia target. Three azimuthal asymmetries giving access to different transverse-momentum-dependent (TMD) parton distribution functions (PDFs) are extracted using dimuon events with invariant mass between 4.3 GeV/c^{2} and 8.5 GeV/c^{2}. Within the experimental uncertainties, the observed sign of the Sivers asymmetry is found to be consistent with the fundamental prediction of quantum chromodynamics (QCD) that the Sivers TMD PDFs extracted from DY have a sign opposite to the one extracted from semi-inclusive deep-inelastic scattering (SIDIS) data. We present two other asymmetries originating from the pion Boer-Mulders TMD PDFs convoluted with either the nucleon transversity or pretzelosity TMD PDFs. A recent COMPASS SIDIS measurement was obtained at a hard scale comparable to that of these DY results. This opens the way for possible tests of fundamental QCD universality predictions.
- Publikační typ
- časopisecké články MeSH
The COMPASS Collaboration at CERN has measured diffractive dissociation of 190 GeV/c pions into the π(-)π(-)π(+) final state using a stationary hydrogen target. A partial-wave analysis (PWA) was performed in bins of 3π mass and four-momentum transfer using the isobar model and the so far largest PWA model consisting of 88 waves. A narrow peak is observed in the f0(980)π channel with spin, parity and C-parity quantum numbers J(PC)=1(++). We present a resonance-model study of a subset of the spin-density matrix selecting 3π states with J(PC)=2(++) and 4(++) decaying into ρ(770)π and with J(PC)=1(++) decaying into f0(980)π. We identify a new a1 meson with mass (1414(-13)(+15)) MeV/c2 and width (153(-23)(+8)) MeV/c2. Within the final states investigated in our analysis, we observe the new a1(1420) decaying only into f0(980)π, suggesting its exotic nature.
- Publikační typ
- časopisecké články MeSH
The COMPASS collaboration at CERN has investigated pion Compton scattering, π(-)γ→π(-)γ, at center-of-mass energy below 3.5 pion masses. The process is embedded in the reaction π(-)Ni→π(-)γNi, which is initiated by 190 GeV pions impinging on a nickel target. The exchange of quasireal photons is selected by isolating the sharp Coulomb peak observed at smallest momentum transfers, Q(2)<0.0015 (GeV/c)(2). From a sample of 63,000 events, the pion electric polarizability is determined to be α(π)=(2.0±0.6(stat)±0.7(syst))×10(-4) fm(3) under the assumption α(π)=-β(π), which relates the electric and magnetic dipole polarizabilities. It is the most precise measurement of this fundamental low-energy parameter of strong interaction that has been addressed since long by various methods with conflicting outcomes. While this result is in tension with previous dedicated measurements, it is found in agreement with the expectation from chiral perturbation theory. An additional measurement replacing pions by muons, for which the cross-section behavior is unambiguously known, was performed for an independent estimate of the systematic uncertainty.
- Publikační typ
- časopisecké články MeSH
We describe an ultrasonic instrument for continuous real-time analysis of the fractional mixture of a binary gas system. The instrument is particularly well suited to measurement of leaks of a high molecular weight gas into a system that is nominally composed of a single gas. Sensitivity < 5 × 10(-5) is demonstrated to leaks of octaflouropropane (C3F8) coolant into nitrogen during a long duration (18 month) continuous study. The sensitivity of the described measurement system is shown to depend on the difference in molecular masses of the two gases in the mixture. The impact of temperature and pressure variances on the accuracy of the measurement is analysed. Practical considerations for the implementation and deployment of long term, in situ ultrasonic leak detection systems are also described. Although development of the described systems was motivated by the requirements of an evaporative fluorocarbon cooling system, the instrument is applicable to the detection of leaks of many other gases and to processes requiring continuous knowledge of particular binary gas mixture fractions.
- MeSH
- analýza selhání vybavení MeSH
- chemické techniky analytické přístrojové vybavení metody MeSH
- design vybavení MeSH
- komplexní směsi analýza MeSH
- mikrochemie přístrojové vybavení metody MeSH
- plyny analýza MeSH
- ultrasonografie přístrojové vybavení metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- komplexní směsi MeSH
- plyny MeSH