BACKGROUND: As a step towards clinical use of AAV-mediated gene therapy, brains of large animals are used to settle delivery parameters as most brain connections, and relative sizes in large animals and primates, are reasonably common. Prior to application in the clinic, approaches that have shown to be successful in rodent models are tested in larger animal species, such as dogs, non-human primates, and in this case, minipigs. NEW METHOD: We evaluated alternate delivery routes to target the basal ganglia by injections into the more superficial corona radiata, and, deeper into the brain, the thalamus. Anatomically known connections can be used to predict the expression of the transgene following infusion of AAV5. For optimal control over delivery of the vector with regards to anatomical location in the brain and spread in the tissue, we have used magnetic resonance image-guided convection-enhanced diffusion delivery. RESULTS: While the transduction of the cortex was observed, only partial transduction of the basal ganglia was achieved via the corona radiata. Thalamic administration, on the other hand, resulted in widespread transduction from the midbrain to the frontal cortex COMPARISON WITH EXISTING METHODS: Compared to other methods, such as delivery directly to the striatum, thalamic injection may provide an alternative when for instance, injection into the basal ganglia directly is not feasible. CONCLUSIONS: The study results suggest that thalamic administration of AAV5 has significant potential for indications where the transduction of specific areas of the brain is required.
- Klíčová slova
- AAV, CED, CNS, Minipigs,
- MeSH
- Dependovirus genetika MeSH
- genetická terapie metody MeSH
- genetické vektory MeSH
- konvekce * MeSH
- magnetická rezonanční tomografie MeSH
- miniaturní prasata genetika MeSH
- prasata MeSH
- psi MeSH
- thalamus * diagnostické zobrazování MeSH
- zvířata MeSH
- Check Tag
- psi MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Spinocerebellar ataxia type 3 (SCA3), or Machado-Joseph disease (MJD), is a progressive neurodegenerative disorder caused by a CAG expansion in the ATXN3 gene. The expanded CAG repeat is translated into a prolonged polyglutamine repeat in the ataxin-3 protein and accumulates within inclusions, acquiring toxic properties, which results in degeneration of the cerebellum and brain stem. In the current study, a non-allele-specific ATXN3 silencing approach was investigated using artificial microRNAs engineered to target various regions of the ATXN3 gene (miATXN3). The miATXN3 candidates were screened in vitro based on their silencing efficacy on a luciferase (Luc) reporter co-expressing ATXN3. The three best miATXN3 candidates were further tested for target engagement and potential off-target activity in induced pluripotent stem cells (iPSCs) differentiated into frontal brain-like neurons and in a SCA3 knockin mouse model. Besides a strong reduction of ATXN3 mRNA and protein, small RNA sequencing revealed efficient guide strand processing without passenger strands being produced. We used different methods to predict alteration of off-target genes upon AAV5-miATXN3 treatment and found no evidence for unwanted effects. Furthermore, we demonstrated in a large animal model, the minipig, that intrathecal delivery of AAV5 can transduce the main areas affected in SCA3 patients. These results proved a strong basis to move forward to investigate distribution, efficacy, and safety of AAV5-miATXN3 in large animals.
- Publikační typ
- časopisecké články MeSH
Huntington's disease (HD) is a fatal neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the huntingtin gene. Previously, we showed strong huntingtin reduction and prevention of neuronal dysfunction in HD rodents using an engineered microRNA targeting human huntingtin, delivered via adeno-associated virus (AAV) serotype 5 vector with a transgene encoding an engineered miRNA against HTT mRNA (AAV5-miHTT). One of the challenges of rodents as a model of neurodegenerative diseases is their relatively small brain, making successful translation to the HD patient difficult. This is particularly relevant for gene therapy approaches, where distribution achieved upon local administration into the parenchyma is likely dependent on brain size and structure. Here, we aimed to demonstrate the translation of huntingtin-lowering gene therapy to a large-animal brain. We investigated the feasibility, efficacy, and tolerability of one-time intracranial administration of AAV5-miHTT in the transgenic HD (tgHD) minipig model. We detected widespread dose-dependent distribution of AAV5-miHTT throughout the tgHD minipig brain that correlated with the engineered microRNA expression. Both human mutant huntingtin mRNA and protein were significantly reduced in all brain regions transduced by AAV5-miHTT. The combination of widespread vector distribution and extensive huntingtin lowering observed with AAV5-miHTT supports the translation of a huntingtin-lowering gene therapy for HD from preclinical studies into the clinic.
- Klíčová slova
- AAV, Huntington disease, gene silencing, microRNA, transgenic minipig,
- MeSH
- Dependovirus genetika MeSH
- expanze trinukleotidových repetic genetika MeSH
- genetická terapie metody MeSH
- genetické vektory genetika MeSH
- geneticky modifikovaná zvířata MeSH
- Huntingtonova nemoc genetika metabolismus terapie MeSH
- lidé MeSH
- mikro RNA genetika metabolismus MeSH
- miniaturní prasata MeSH
- modely nemocí na zvířatech MeSH
- prasata MeSH
- protein huntingtin genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mikro RNA MeSH
- protein huntingtin MeSH