The human dopamine transporter gene SLC6A3 has been consistently implicated in several neuropsychiatric diseases but the disease mechanism remains elusive. In this risk synthesis, we have concluded that SLC6A3 represents an increasingly recognized risk with a growing number of familial mutants associated with neuropsychiatric and neurological disorders. At least five loci were related to common and severe diseases including alcohol use disorder (high activity variant), attention-deficit/hyperactivity disorder (low activity variant), autism (familial proteins with mutated networking) and movement disorders (both regulatory variants and familial mutations). Association signals depended on genetic markers used as well as ethnicity examined. Strong haplotype selection and gene-wide epistases support multimarker assessment of functional variations and phenotype associations. Inclusion of its promoter region's functional markers such as DNPi (rs67175440) and 5'VNTR (rs70957367) may help delineate condensate-based risk action, testing a locus-pathway-phenotype hypothesis for one gene-multidisease etiology.
- MeSH
- fenotyp MeSH
- haplotypy MeSH
- hyperkinetická porucha * genetika MeSH
- lidé MeSH
- mutace MeSH
- proteiny přenášející dopamin přes plazmatickou membránu * genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- proteiny přenášející dopamin přes plazmatickou membránu * MeSH
- SLC6A3 protein, human MeSH Prohlížeč
OBJECTIVES: Although the incidence of measles has decreased globally since the introduction of regular vaccination, its frequency has increased again in recent years. The study is focused on data from the Olomouc Region in the Czech Republic analyzed in four laboratories. The obtained results were compared with already published data. METHODS: The data were provided by individual laboratories in an anonymized form-age at the time of the examination, sex, and result of test. Samples were collected between June 2018 and September 2019 and evaluated on the scale positive-borderline-negative. RESULTS: A total of 7962 sera samples were evaluated using three different methods-two types of ELISA tests and CLIA. Positive result was issued in a total of 62.6 percent of samples, but the results of individual laboratories varied widely from 55.5 to 70.8 percent. However, the same trend with the highest levels of antibodies in people born before beginning of vaccination was observed. CONCLUSIONS: Data show significantly different results depending on the individual laboratories and the detection kits used. The underestimation of the proportion of positive results can cause problems in selecting individuals for revaccination with a live vaccine, which may fail in weakly positive individuals.
- Klíčová slova
- Czech Republic, ELISA, LIAISON, Olomouc region, measles,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: HIV-1 entry into host cells is mediated by interactions between the virus envelope glycoprotein (gp120/gp41) and host-cell receptors. N-glycans represent approximately 50% of the molecular mass of gp120 and serve as potential antigenic determinants and/or as a shield against immune recognition. We previously reported that N-glycosylation of recombinant gp120 varied, depending on the producer cells, and the glycosylation variability affected gp120 recognition by serum antibodies from persons infected with HIV-1 subtype B. However, the impact of gp120 differential glycosylation on recognition by broadly neutralizing monoclonal antibodies or by polyclonal antibodies of individuals infected with other HIV-1 subtypes is unknown. METHODS: Recombinant multimerizing gp120 antigens were expressed in different cells, HEK 293T, T-cell, rhabdomyosarcoma, hepatocellular carcinoma, and Chinese hamster ovary cell lines. Binding of broadly neutralizing monoclonal antibodies and polyclonal antibodies from sera of subtype A/C HIV-1-infected subjects with individual gp120 glycoforms was assessed by ELISA. In addition, immunodetection was performed using Western and dot blot assays. Recombinant gp120 glycoforms were tested for inhibition of infection of reporter cells by SF162 and YU.2 Env-pseudotyped R5 viruses. RESULTS: We demonstrated, using ELISA, that gp120 glycans sterically adjacent to the V3 loop only moderately contribute to differential recognition of a short apex motif GPGRA and GPGR by monoclonal antibodies F425 B4e8 and 447-52D, respectively. The binding of antibodies recognizing longer peptide motifs overlapping with GPGR epitope (268 D4, 257 D4, 19b) was significantly altered. Recognition of gp120 glycoforms by monoclonal antibodies specific for other than V3-loop epitopes was significantly affected by cell types used for gp120 expression. These epitopes included CD4-binding site (VRC03, VRC01, b12), discontinuous epitope involving V1/V2 loop with the associated glycans (PG9, PG16), and an epitope including V3-base-, N332 oligomannose-, and surrounding glycans-containing epitope (PGT 121). Moreover, the different gp120 glycoforms variably inhibited HIV-1 infection of reporter cells. CONCLUSION: Our data support the hypothesis that the glycosylation machinery of different cells shapes gp120 glycosylation and, consequently, impacts envelope recognition by specific antibodies as well as the interaction of HIV-1 gp120 with cellular receptors. These findings underscore the importance of selection of appropriately glycosylated HIV-1 envelope as a vaccine antigen.
- Klíčová slova
- Deglycosylation resistance, Glycan-specific antibody, Neutralization inhibition, gp120 glycosylation,
- Publikační typ
- časopisecké články MeSH