Current approaches for the assessment of environmental and human health risks due to exposure to chemical substances have served their purpose reasonably well. Nevertheless, the systems in place for different uses of chemicals are faced with various challenges, ranging from a growing number of chemicals to changes in the types of chemicals and materials produced. This has triggered global awareness of the need for a paradigm shift, which in turn has led to the publication of new concepts for chemical risk assessment and explorations of how to translate these concepts into pragmatic approaches. As a result, next-generation risk assessment (NGRA) is generally seen as the way forward. However, incorporating new scientific insights and innovative approaches into hazard and exposure assessments in such a way that regulatory needs are adequately met has appeared to be challenging. The European Partnership for the Assessment of Risks from Chemicals (PARC) has been designed to address various challenges associated with innovating chemical risk assessment. Its overall goal is to consolidate and strengthen the European research and innovation capacity for chemical risk assessment to protect human health and the environment. With around 200 participating organisations from all over Europe, including three European agencies, and a total budget of over 400 million euro, PARC is one of the largest projects of its kind. It has a duration of seven years and is coordinated by ANSES, the French Agency for Food, Environmental and Occupational Health & Safety.
- Klíčová slova
- Chemicals, Exposure assessment, Hazard characterisation, Human biomonitoring (HBM), New approach methods (NAM), Next-generation risk assessment (NGRA), Safety assessment,
- MeSH
- hodnocení rizik * MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- dopisy MeSH
- Geografické názvy
- Evropa MeSH
Staphylococcus aureus (S. aureus) is an important causative agent of contagious intermammary infections in dairy cattle. S. aureus is also considered as an important foodborne pathogen and cause of food poisoning cases and outbreaks worldwide. In order to understand the molecular ecology of S. aureus, the present study compared phenotypic and genotypic characteristics of 70 S. aureus isolates from bovine mastitis milk samples collected during the period from August 2001 to March 2014 in different regions of Northern Germany. The S. aureus isolates were characterised phenotypically, as well as genotypically for their genetic diversity using multi-locus sequence typing (MLST), spa typing and the presence of virulence genes encoding 16 staphylococcal enterotoxins (sea-selu), toxic shock syndrome toxin (tst), thermonuclease (nuc), clumping factor (clfA and clfB), coagulase (coa) and the methicillin resistance gene mecA. A total of 16 sequence types were grouped into eight clonal complexes (CCs), and 17 spa types were identified. These included six novel sequence types and one novel spa type. The majority of bovine mastitis milk-associated sequence types belonged to the clonal complex CC5, CC97, CC133, and CC151 and showed closely related genotypes or lineages with sequence types of human origin. The genotype CC133 (ST133-t1403) was predominant, constituting 27.1% of the isolates. In addition, the S. aureus isolates displayed nine different enterotoxigenic profiles. All S. aureus were methicillin-susceptible (MSSA). The current study provides new information on phenotypic and genotypic traits of S. aureus isolates from bovine mastitis. The comparison of characteristics of isolates from the present study originating from mastitis milk showed similarities with human isolates. This might help to better understand the distribution of S. aureus in the one health context.
- MeSH
- bakteriální geny genetika MeSH
- bakteriální léková rezistence genetika MeSH
- bakteriální proteiny MeSH
- enterotoxiny genetika MeSH
- faktory virulence genetika MeSH
- fenotyp MeSH
- genotyp MeSH
- lidé MeSH
- mastitida skotu mikrobiologie MeSH
- mléko mikrobiologie MeSH
- multilokusová sekvenční typizace MeSH
- potravinářská mikrobiologie MeSH
- proteiny vázající penicilin nedostatek MeSH
- skot MeSH
- stafylokokové infekce mikrobiologie MeSH
- Staphylococcus aureus klasifikace genetika izolace a purifikace MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- skot MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Německo epidemiologie MeSH
- Názvy látek
- bakteriální proteiny MeSH
- enterotoxiny MeSH
- faktory virulence MeSH
- mecA protein, Staphylococcus aureus MeSH Prohlížeč
- proteiny vázající penicilin MeSH
Rat hepatitis E virus (HEV) is genetically only distantly related to hepeviruses found in other mammalian reservoirs and in humans. It was initially detected in Norway rats (Rattus norvegicus) from Germany, and subsequently in rats from Vietnam, the USA, Indonesia, China, Denmark and France. Here, we report on a molecular survey of Norway rats and Black rats (Rattus rattus) from 12 European countries for ratHEV and human pathogenic hepeviruses. RatHEV-specific real-time and conventional RT-PCR investigations revealed the presence of ratHEV in 63 of 508 (12.4%) rats at the majority of sites in 11 of 12 countries. In contrast, a real-time RT-PCR specific for human pathogenic HEV genotypes 1-4 and a nested broad-spectrum (NBS) RT-PCR with subsequent sequence determination did not detect any infections with these genotypes. Only in a single Norway rat from Belgium a rabbit HEV-like genotype 3 sequence was detected. Phylogenetic analysis indicated a clustering of all other novel Norway and Black rat-derived sequences with ratHEV sequences from Europe, the USA and a Black rat-derived sequence from Indonesia within the proposed ratHEV genotype 1. No difference in infection status was detected related to age, sex, rat species or density of human settlements and zoological gardens. In conclusion, our investigation shows a broad geographical distribution of ratHEV in Norway and Black rats from Europe and its presence in all settlement types investigated.
- Klíčová slova
- Black rat, Europe, Genotype 3, Hepatitis E virus, Hepeviridae, Norway rat,
- MeSH
- divoká zvířata MeSH
- druhová specificita MeSH
- fylogeneze MeSH
- hepatitida E epidemiologie veterinární virologie MeSH
- hustota populace MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- rozšíření zvířat MeSH
- virus hepatitidy E klasifikace genetika izolace a purifikace MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa epidemiologie MeSH