With accelerating environmental change, understanding forest disturbance impacts on trade-offs between biodiversity and carbon dynamics is of high socio-economic importance. Most studies, however, have assessed immediate or short-term effects of disturbance, while long-term impacts remain poorly understood. Using a tree-ring-based approach, we analysed the effect of 250 years of disturbances on present-day biodiversity indicators and carbon dynamics in primary forests. Disturbance legacies spanning centuries shaped contemporary forest co-benefits and trade-offs, with contrasting, local-scale effects. Disturbances enhanced carbon sequestration, reaching maximum rates within a comparatively narrow post-disturbance window (up to 50 years). Concurrently, disturbance diminished aboveground carbon storage, which gradually returned to peak levels over centuries. Temporal patterns in biodiversity potential were bimodal; the first maximum coincided with the short-term post-disturbance carbon sequestration peak, and the second occurred during periods of maximum carbon storage in complex old-growth forest. Despite fluctuating local-scale trade-offs, forest biodiversity and carbon storage remained stable across the broader study region, and our data support a positive relationship between carbon stocks and biodiversity potential. These findings underscore the interdependencies of forest processes, and highlight the necessity of large-scale conservation programmes to effectively promote both biodiversity and long-term carbon storage, particularly given the accelerating global biodiversity and climate crises.
- Klíčová slova
- biodiversity conservation, carbon sequestration, carbon storage, climate change, historical disturbance, primary forest,
- MeSH
- biodiverzita MeSH
- klimatické změny * MeSH
- lesy MeSH
- sekvestrace uhlíku MeSH
- stromy MeSH
- uhlík * analýza MeSH
- zachování přírodních zdrojů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- uhlík * MeSH
In many species, decreasing body size has been associated with increasing temperatures. Although climate-induced phenotypic shifts, and evolutionary impacts, can affect the structure and functioning of marine and terrestrial ecosystems through biological and metabolic rules, evidence for shrinking body size is often challenged by (i) relatively short intervals of observation, (ii) a limited number of individuals, and (iii) confinement to small and isolated populations. To overcome these issues and provide important multi-species, long-term information for conservation managers and scientists, we compiled and analysed 222 961 measurements of eviscerated body weight, 170 729 measurements of hind foot length and 145 980 measurements of lower jaw length, in the four most abundant Alpine ungulate species: ibex (Capra ibex), chamois (Rupicapra rupicapra), red deer (Cervus elaphus) and roe deer (Capreolus capreolus). Regardless of age, sex and phylogeny, the body mass and size of these sympatric animals, from the eastern Swiss Alps, remained stable between 1991 and 2013. Neither global warming nor local hunting influenced the fitness of the wild ungulates studied at a detectable level. However, we cannot rule out possible counteracting effects of enhanced nutritional resources associated with longer and warmer growing seasons, as well as the animals' ability to migrate along extensive elevational gradients in the highly diversified alpine landscape of this study.
- Klíčová slova
- Alpine ungulates, Bergmann's rule, biometric monitoring, climate change, metabolic rate, organism shrinking,
- Publikační typ
- časopisecké články MeSH
Selective hunting can affect demographic characteristics and phenotypic traits of the targeted species. Hunting systems often involve harvesting quotas based on sex, age and/or size categories to avoid selective pressure. However, it is difficult to assess whether such regulations deter hunters from targeting larger "trophy" animals with longer horns that may have evolutionary consequences. Here, we compile 44,088 annually resolved and absolutely dated measurements of Alpine ibex (Capra ibex) horn growth increments from 8,355 males, harvested between 1978 and 2013, in the eastern Swiss Canton of Grisons. We aim to determine whether male ibex with longer horns were preferentially targeted, causing animals with early rapid horn growth to have shorter lives, and whether such hunting selection translated into long-term trends in horn size over the past four decades. Results show that medium- to longer-horned adult males had a higher probability of being harvested than shorter-horned individuals of the same age and that regulations do affect the hunters' behaviour. Nevertheless, phenotypic traits such as horn length, as well as body size and weight, remained stable over the study period. Although selective trophy hunting still occurs, it did not cause a measurable evolutionary response in Grisons' Alpine ibex populations; managed and surveyed since 1978. Nevertheless, further research is needed to understand whether phenotypic trait development is coinfluenced by other, potentially compensatory factors that may possibly mask the effects of selective, long-term hunting pressure.
- Klíčová slova
- Capra ibex, Alpine ungulate, Swiss Alps, evolutionary change, horn growth, phenotypic plasticity, trophy hunting, wildlife management,
- MeSH
- fenotyp MeSH
- kozy genetika růst a vývoj MeSH
- lidské činnosti * MeSH
- rohy růst a vývoj MeSH
- selekce (genetika) * MeSH
- sporty MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Švýcarsko MeSH
Direct effects of climate change on animal physiology, and indirect impacts from disruption of seasonal synchrony and breakdown of trophic interactions are particularly severe in Arctic and Alpine ecosystems. Unravelling biotic from abiotic drivers, however, remains challenging because high-resolution animal population data are often limited in space and time. Here, we show that variation in annual horn growth (an indirect proxy for individual performance) of 8043 male Alpine ibex (Capra ibex) over the past four decades is well synchronised among eight disjunct colonies in the eastern Swiss Alps. Elevated March to May temperatures, causing premature melting of Alpine snowcover, earlier plant phenology and subsequent improvement of ibex food resources, fuelled annual horn growth. These results reveal dependency of local trophic interactions on large-scale climate dynamics, and provide evidence that declining herbivore performance is not a universal response to global warming even for high-altitude populations that are also harvested.
- Klíčová slova
- Alpine ungulates, European Alps, body size, climate change, ecological response, horn growth, phenotypic plasticity, plant phenology, spatial synchrony, trophic interaction,
- MeSH
- klimatické změny * MeSH
- kozy růst a vývoj MeSH
- lineární modely MeSH
- roční období * MeSH
- rohy růst a vývoj MeSH
- teplota * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- dopisy MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Švýcarsko MeSH