We demonstrate the formation of the near field with non-trivial phase distribution using surface plasmon interference devices, and experimental quantitative imaging of that phase with near-field phase microscopy. The phase distribution formed with a single device can be controlled by the polarization of the external illumination and the area of the device assigned to the object wave. A comparison of the experimental data to a numerical electromagnetic model and an analytical model assigns the origin of the near-field phase to the out-of-plane electric component of surface plasmon polaritons, and also verifies the predictive power of the models. We demonstrate a formation of near-field plane waves with different propagation directions on a single device, or even simultaneously at distinct areas of a single device. Our findings open the way to the imaging and tomography of phase objects in the near field.
- Klíčová slova
- SNOM, SPP waves, interference nanostructures, near-field, phase imaging,
- Publikační typ
- časopisecké články MeSH
Fresnel incoherent correlation holography (FINCH) was a milestone in incoherent holography. In this roadmap, two pathways, namely the development of FINCH and applications of FINCH explored by many prominent research groups, are discussed. The current state-of-the-art FINCH technology, challenges, and future perspectives of FINCH technology as recognized by a diverse group of researchers contributing to different facets of research in FINCH have been presented.
- Klíčová slova
- Fresnel incoherent correlation holography, color holography, computational coherent superposition, digital holographic microscopy, digital holography, fluorescence microscopy, incoherent holography, lattice light-sheet holography, metasurfaces, multiplexed imaging, phase-shifting interferometry, single-molecule localization microscopy,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The key information about any nanoscale system relates to the orientations and conformations of its parts. Unfortunately, these details are often hidden below the diffraction limit, and elaborate techniques must be used to optically probe them. Here we present imaging of the 3D rotation motion of metal nanorods, restoring the distinct nanorod orientations in the full extent of azimuthal and polar angles. The nanorods imprint their 3D orientation onto the geometric phase and space-variant polarization of the light they scatter. We manipulate the light angular momentum and generate optical vortices that create self-interference images providing the nanorods' angles via digital processing. After calibration by scanning electron microscopy, we demonstrated time-resolved 3D orientation imaging of sub-100 nm nanorods under Brownian motion (frame rate up to 500 fps). We also succeeded in imaging nanorods as nanoprobes in live-cell imaging and reconstructed their 3D rotational movement during interaction with the cell membrane (100 fps).
- Klíčová slova
- Dark-field microscopy, Light angular momentum, Nanorods, Optical vortices, Orientation imaging, Space-variant polarization,
- MeSH
- nanotrubičky * MeSH
- pohyb těles MeSH
- zlato * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- zlato * MeSH
We present geometric-phase microscopy allowing a multipurpose quantitative phase imaging in which the ground-truth phase is restored by quantifying the phase retardance. The method uses broadband spatially incoherent light that is polarization sensitively controlled through the geometric (Pancharatnam-Berry) phase. The assessed retardance possibly originates either in dynamic or geometric phase and measurements are customized for quantitative mapping of isotropic and birefringent samples or multi-functional geometric-phase elements. The phase restoration is based on the self-interference of polarization distinguished waves carrying sample information and providing pure reference phase, while passing through an inherently stable common-path setup. The experimental configuration allows an instantaneous (single-shot) phase restoration with guaranteed subnanometer precision and excellent ground-truth accuracy (well below 5 nm). The optical performance is demonstrated in advanced yet routinely feasible noninvasive biophotonic imaging executed in the automated manner and predestined for supervised machine learning. The experiments demonstrate measurement of cell dry mass density, cell classification based on the morphological parameters and visualization of dynamic dry mass changes. The multipurpose use of the method was demonstrated by restoring variations in the dynamic phase originating from the electrically induced birefringence of liquid crystals and by mapping the geometric phase of a space-variant polarization directed lens.
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Optical metasurfaces have emerged as a new generation of building blocks for multifunctional optics. Design and realization of metasurface elements place ever-increasing demands on accurate assessment of phase alterations introduced by complex nanoantenna arrays, a process referred to as quantitative phase imaging. Despite considerable effort, the widefield (nonscanning) phase imaging that would approach resolution limits of optical microscopy and indicate the response of a single nanoantenna still remains a challenge. Here, we report on a new strategy in incoherent holographic imaging of metasurfaces, in which unprecedented spatial resolution and light sensitivity are achieved by taking full advantage of the polarization selective control of light through the geometric (Pancharatnam-Berry) phase. The measurement is carried out in an inherently stable common-path setup composed of a standard optical microscope and an add-on imaging module. Phase information is acquired from the mutual coherence function attainable in records created in broadband spatially incoherent light by the self-interference of scattered and leakage light coming from the metasurface. In calibration measurements, the phase was mapped with the precision and spatial background noise better than 0.01 and 0.05 rad, respectively. The imaging excels at the high spatial resolution that was demonstrated experimentally by the precise amplitude and phase restoration of vortex metalenses and a metasurface grating with 833 lines/mm. Thanks to superior light sensitivity of the method, we demonstrated for the first time to our knowledge the widefield measurement of the phase altered by a single nanoantenna while maintaining the precision well below 0.15 rad.
The knowledge of the phase distribution of the near electromagnetic field has become very important for many applications. However, its experimental observation is still technologically a very demanding task. In this work, we propose a novel method for the measurement of the phase distribution of the near electric field based on the principles of phase-shifting digital holography. In contrast to previous methods the holographic interference occurs already in the near field and the phase distribution can be determined purely from the scanning near-field optical microscopy measurements without the need for additional far-field interferometric methods. This opens a way towards on-chip phase imaging. We demonstrate the capabilities of the proposed method by reconstruction of the phase difference between interfering surface plasmon waves and by imaging the phase of a single surface plasmon wave. We also demonstrate a selectivity of the method towards individual components of the field.
- Publikační typ
- časopisecké články MeSH
We demonstrate a new imaging method enabling a selective edge contrast enhancement of three-dimensional amplitude objects with spatially incoherent light. The imaging process is achieved in a spiral modification of Fresnel incoherent correlation holography and uses a vortex impulse response function. The correlation recordings of the object are acquired in a one-way interferometer with the wavefront division carried out by a spatial light modulator. Two different methods based on applying a helical reference wave in the hologram recording and a digital spiral phase modulation in image reconstruction are proposed for edge enhancement of amplitude objects. Results of both isotropic and anisotropic spiral imaging are demonstrated in experiments using an LED as an incoherent source of light.
- Publikační typ
- časopisecké články MeSH
Fresnel Incoherent Correlation Holography (FINCH) allows digital reconstruction of incoherently illuminated objects from intensity records acquired by a Spatial Light Modulator (SLM). The article presents wave optics model of FINCH, which allows analytical calculation of the Point Spread Function (PSF) for both the optical and digital part of imaging and takes into account Gaussian aperture for a spatial bounding of light waves. The 3D PSF is used to determine diffraction limits of the lateral and longitudinal size of a point image created in the FINCH set-up. Lateral and longitudinal resolution is investigated both theoretically and experimentally using quantitative measures introduced for two-point imaging. Dependence of the resolving power on the system parameters is studied and optimal geometry of the set-up is designed with regard to the best lateral and longitudinal resolution. Theoretical results are confirmed by experiments in which the light emitting diode (LED) is used as a spatially incoherent source to create object holograms using the SLM.
- MeSH
- algoritmy MeSH
- čočky MeSH
- design vybavení MeSH
- holografie metody MeSH
- kapalné krystaly MeSH
- normální rozdělení MeSH
- optika a fotonika metody MeSH
- počítačová simulace MeSH
- statistické modely MeSH
- světlo MeSH
- zobrazování trojrozměrné metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH