BACKGROUND: Zinc nanoparticles (NPs) are characterized by high bioavailability, small size, and high absorbability. The purpose of this experiment was to determine the effect of Zn-NP feed supplementation on ruminal fermentation, microbiota, and histopathology in lambs. In vitro (24 h), short-term (STE, 28 d), and long-term (LTE, 70 d) experiments were performed. The lambs in STE were fed a basal diet (BD) composed of 350 g/d ground barley and 700 g/d meadow hay (Control), BD enriched with ZnO-NPs (80 mg Zn/kg of diet, ZnO-NPs), and BD enriched with Zn phosphate-based NPs (80 mg Zn/kg of diet, ZnP-NP). The in vitro gas production technique was used in incubated rumen fluid from STE. The lambs in LTE were fed BD (Control), BD enriched with ZnO-NPs (40 mg Zn/kg of diet, ZnO-NP40), BD enriched with ZnO-NPs (80 mg Zn/kg of diet, ZnO-NP80) and BD enriched with ZnO (80 mg Zn/kg of diet, ZnO-80). RESULTS: After 24 h of incubation, dry matter digestibility was higher for ZnO-NP and ZnP-NP substrates than the control in an in vitro experiment (P < 0.001). The total bacterial population in the STE was lower (P < 0.001) in the ZnP-NP group than in the control and ZnO-NP groups, but the protozoan populations were not significantly different. The ammonia-N concentration in LTE was lowest in the ZnO-NP80 group (P = 0.002), but the activities of carboxymethyl cellulase (P < 0.001) and xylanase (P = 0.002) were higher in the ZnO-NP40, ZnO-NP80, and ZnO-80 groups than in the control group. Morphological observation after STE and LTE revealed histological changes (e.g. inflammation of the epithelium or edema of the connective tissue) in the rumen of lambs. CONCLUSION: Zn-NP supplementation up to 70 d improved feed-use efficiency and influenced ammonia-N concentration and activities of hydrolases in the rumen. The active ruminal fermentation affected the health of the ruminal papillae and epithelium in the lambs, regardless of the application's form, dose, or duration. However, by affecting rumen microbial fermentation, Zn-NPs could alter fermentation patterns, thereby increasing the capacity of host rumen epithelial cells to transport short-chain fatty acids.
- Klíčová slova
- Fermentation, Ruminal histology, Ruminal microorganisms, Zinc nanoparticles,
- MeSH
- bachor * účinky léků metabolismus mikrobiologie MeSH
- dieta * veterinární MeSH
- fermentace * MeSH
- kovové nanočástice aplikace a dávkování MeSH
- krmivo pro zvířata * analýza MeSH
- ovce MeSH
- oxid zinečnatý aplikace a dávkování farmakologie MeSH
- potravní doplňky * MeSH
- střevní mikroflóra účinky léků MeSH
- zinek * farmakologie aplikace a dávkování metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- oxid zinečnatý MeSH
- zinek * MeSH
BACKGROUND: Parallel in vitro and in vivo experiments were designed to evaluate promising chemotherapeutic alternatives for controlling haemonchosis in ruminants. In vitro anthelmintic activities (egg hatch test - EHT; larval development test - LDT) of aqueous and methanolic herbal extracts Mix1 and Mix2 were investigated. The in vivo effects of dietary supplementation with Mix1 and Mix2 on the parasitological status, inflammatory response, antioxidant parameters and microbial community of the lambs infected experimentally with Haemonchus contortus were investigated. Lambs were divided into four groups for the in vivo study: uninfected control lambs (C), infected lambs (I), infected lambs supplemented with Mix1 (I + Mix1) and infected lambs supplemented with Mix2 (I + Mix2). The experimental period was 70 days. RESULTS: The number of eggs per gram (EPG) of feces was quantified 22, 30, 37, 44, 51, 58, 65 and 70 days post-infection, and mean abomasal worm counts were assessed 70 days post-infection. Quantitative analyses identified 57.3 and 22.2 mg/g phenolic acids, 41.5 and 29.5 mg/g flavonoids and 1.4 and 1.33 mg/g protoberberine-type alkaloids in Mix1 and Mix2, respectively. The methanolic extracts of the herbal mixtures in both in vitro tests had higher anthelmintic effects (P < 0.01) than the aqueous extracts, but the effects did not differ significantly between Mix1 and Mix2 (P > 0.05). I + Mix1 and I + Mix2 lowered mean EPGs between 44 and 70 d by 58.1 and 51.6%, respectively. The level of IgG antibodies against H. contortus increased significantly after infection in each infected group. CONCLUSION: These results represent the first monitoring of the in vitro anthelmintic effects of herbal mixtures on H. contortus. The in vivo experiment indicated that the anthelmintic effect was not sufficient for the elimination of parasites, but this herbal treatment may affect the host over a longer term, reducing the parasitic infection in the host.
- Klíčová slova
- 16S rRNA gene, Haemonchus contortus antigen, Phytochemicals, Total antioxidant capacity, UHRMS,
- MeSH
- biologické přípravky farmakologie MeSH
- Haemonchus účinky léků MeSH
- hemonchóza prevence a kontrola veterinární MeSH
- léčivé rostliny MeSH
- nemoci ovcí prevence a kontrola MeSH
- ovce MeSH
- počet parazitárních vajíček MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- randomizované kontrolované studie veterinární MeSH
- Názvy látek
- biologické přípravky MeSH